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Abstract

In this study, a numerical algorithm for solving a class of system of linear integro
differential equations with weakly singular kernel is presented. This algorithm is based
on polynomial approximation and collocation method, using the first kind Chebyshev
polynomial basis. This method transforms the equations and the given conditions into
matrix equation which corresponds to a system of linear algebraic equation. To show the
validity and applicability of the numerical method some experiments are examined.

Present method is compared some numerical methods.
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Zayif Tekil Cekirdekli Lineer Integro Diferansiyel Denklemlerin Bir Sinifinin

Chebyshev Seri Coziimleri
Oz
Bu ¢alismada, zayif tekil ¢ekirdekli lineer integro diferansiyel denklemlerin bir
siift i¢in bir niimerik algoritma sunulacaktir. Bu algoritma birinci tip Chebyshev
polinom bazi yardimiyla polinom yaklagimi ve siralama metodunu temel almaktadir. Bu
metot verilen denklem ve kosullar1 bir matris denklemine doniistiiriir. Niimerik metodun

uygulanabilirligini ve dogrulugunu gostermek amaciyla bazi 6rnekler incelenecektir.

Sunulan metot diger metotlar ile kiyaslanmustir.
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1. Introduction

Applications in many important fields, like fracture mechanics, elastic contact
problems, the theory of porous filtering and combined infrared radiation and molecular
conduction [1-4], contain integral and integro-differential equations with singular kernel.
Singular integral and integro-differential equations are usually difficult to solve
analytically so it is required to obtain the approximate solution and the aim in the present
research is to develop an accurate as well as easy to implement numerical solution scheme

to treat such equations.

These type equations have been solved numerically by some authours. We can give

some studies in literature [5-17].

We consider the class of system of linear integro-differential eqeuations with

weakly singular kernel

Y POy (1) =4, j y’( al

p=0¢=0

—dit £, =0l (1)

with conditions

n=1 m

DDy =2 )

r=0 p=0

where f(f) and Pp’q (t) are analytic functions, c/p and A, are constant. For ¢ =0, Eq.

(1) is a nonsystem integro-differential equation and is Abel’s equation with convenient

coefficients. We construct to the shifted Chebyshev series solutions that is;
yi (0= Za’T (1) 3)

where T.(¢) denotes the Chebyshev polynomials of the first kind, a’ (0<r < N) are

unknown Chebyshev coefficients, and N is chosen any positive integer.
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The Chebyshev polynomials 7 (¢) of the first kind are the polynomials in ¢ of
degree r, defined by relation [18, 19]

T (t) =cosn@,when ¢ =cosé.

If the range of the variable ¢ is the interval [—-1,1], the range the corresponding
variables # can be taken [0,7]. These polynomials have the following properties [18,
19]:

1) The Chebyshev polynomials with degree 7 +1 has absolutly complete » +1 real
zeroes which is called The Chebyshev-Gaus nodes on the interval [—1,1] and these roots
compute as

{ = cos P =D+ D7

, ,i=0,,...,N. ()
2(r +1)

i1) The Chebyshev polynomials with degree » is ortogonal on [—1,1] together with

1
the weight function w(¢) = (1—¢°) 2.

ii1) The passing equation between the powers ¢" and the Chebyshev polynomials

T (1) is
t2r — 2—2r+] Z( r JTZS (t) ’ (5)
s=0 r—s
" (2r+1
5=0 r—s

2. Fundamental Matrix Relations

In this section, we convert the part of Eq. (1) and conditions Eq. (2) into the matrix

form. Using the Eq. (3), we have the matrix relation of solutions and its derivatives as:

@) =ToA’, ()7

(7

O =TY®HA’ j=0]1,...m,

where
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T =11, ()T, (). T, A’ =[a] aj..a}]
By using the expression (5) and (6) and taking » =0,1,..., N we find the corresponding

matrix relation as follows
(Y@)" =D(T(2))" and Y()=T(@#D", (8)
where
Y(O) =[11...t"],

and for odd N,

for even N,

2(N/2 (N-2)/2 o) |
Then, by taking into account (8) we obtain
T(H=Y(@)D")
and
(T@)” =YD, g=0,,..n. 9)

To obtain the matrix Y (¢) in terms of the matrix Y(¢) , we can use the following relation:
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YO0 =Y0OB"), (10)

7,0
where (B')" =1, and

0 0 0 .. 0
0 0 ... 0
B={0 2 0 .. 0]

0 0 0 N 0]

Consequently, by substituting the matrix form (9) and (10) into (7), we get the matrix

representation of approximate solution and its derivatives as follows:

(Y)?@ =Y (B ) D) A (11)

On the other hand, the matrix representation of the conditions Eq. (2) are given by

matrix relation as:

S f:cr;Y(t)( "Y' TAY =4, (12)

p=0

1l
=1

Iz

For the part /1/_.'[ 7,9 .., we have the following equation [7]

o VE—X

1

(+N)

2
dy = NZL(N +1)x

t xN
gvf‘x F(N+;)

and so, we get

/”ij‘ Y (x) dx = ,1]4 {.:[ \/‘:(__t)xdt](l)l)r Al = ;L.I.Q(t)(l)fl)r A, (13)

o VE—X
where

\/Zm)x; \/Zr(z)xg \/ZF(NH)x;uv |

n; r@) rw+;

Q@) =
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3. Description Method

In this chapter, we present the fundamental matrix equation which give us the
matrix form of Eq. (1). To obtain the matrix form of Eq. (1), If Eq. (11) is put into Eq.

(1), we have

33 P oY ()BT f (D7) A :zji\y/gdﬁfj(t), J=01...m (14)

p=0 g=0

then, it can be written as:

(ipq%BqD—/le(t)DJAzF,

(15)
where
Y¢#H 0 - 0 _(BT)" 0 ) ]
I 0 Y@ - 0 Ty
YO =| . () - . | B, = 0 (B) . 0 ’
0 0 - Y() 0 0o ... (Br)q_
@) 0 0 Pa®) Pi@) - P(0)
! P () P.(t) --- P.(t
D — (.) (D ) , Pq (t) — qO:( ) ql:( ) N qn:( ) ,
0 0 - (D))" Po@) FPi@) - B0
Q»n 0 - 0 So(®) A’
_ )y - 0 t A'
0 0 - Q@ S (@) A"
If the Chebyshev-Gauss grid nodes are put into Eq. (14), the matrix form of the Eq. (1) is
obtained
( PqYBqD—;thD]Azf, (16)
q=0
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_Y(to) 0 0 | P, 0 0
Y| 0 Y@ 0 | Fo| O P O
00 Y1), 0 0 Py
Q@) 0 0 F,
o=| 0 QW) o | Fo|f|
L0 0 - QG Fy
where
Y(t) 0 0 P,() O 0
vay-| o YW = 0 B °
0 0 - Y(t) 0 0 - P,1)
Q) 0 = 0 o)
Q(t[): 0 Q(tz) 0 ,Fi: fl(tz) ,
0 0 - Q) £

where the dimension of matrices Y, B P ) Pq ,Q diagonal matrices and the

dimension of these matrices are m(N +1)xm(N +1), P, (¢), B, are (m+1)x(s+1) and

F is m(N +1)x1.

Hence, the matrix equation (16) corresponding to Eq. (1) can be written in the form
WA=F or [W;F}, (17)
where

W=iP_qYBqD.
=0
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Moreover, the matrix form for conditions can be written as
UA =G, (18)

where for £ =0,1,...,m, [ =0,1,....m(N +1),

U, 0 0 - 0 Ay
0 U, 0 0 A

U=[u,]=| 0 0 U, - 0/, G=|4,/|
0 0 0 - U, A,

and
| C
U, =, YOB' ) ()", j=0L...,m.

If the condition matrix Eq. (18) relocate by the last n rows of the matrix Eq. (17)
to get the approximate solution of system of linear integro-differential equations with
weakly singular kernel Eq. (1) with the conditions Eq. (2) by Chebyshev polynomials, we

obtain the augmented matrix:

WA=F, (19)
where
Woo Woi o Woxm(N+1)
Wig Wi o Wiam(N+1)
W= Wonoimo Warv-vor = Wivtym(v+1)
Upo Uy o Uoum(n+1)
L Uno U, U m(N+1)
and
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Therefore, Eq. (19) give us a algebraic systems which include m(N +1)xm(N +1)
linear algebraic equations with m(N +1) unknown Chebyshev coefficients. If W is

invertible, then it can be written A =(W)'F. Thus, the matrix A (thereby the

coefficients matrix A/, j =0,1,...,m) is uniquely determined.

4. Test Problems

In this section, we give five test problem corresponding to equation (1) to
demonstrate the efficiency of proposed method. Examples 1 and 2 is are given systems
of integro-differential equations, 3 and 4 are Abel’s equations. All numerical scheme is

calculated by using Maple 15. The absolute errors in Tables are the values of

, those at selected points.

Example 1. Let us consider the following singular integro-differential equation

' [ Vo) 3 4 us
D+y,)—ty, ()= | =—==dx+l+t—-t" —=¢"",
Yo () + 7o () = ,(1) !mx ;

5/2

16
() + vy (1) + y,(1) = j\/_dx+2t+2tz—gt :

with subject to conditions
¥0(0)=3,(0)=0,

with eaxact solutions y,(t)=t ve y,(f)=t>. For N =5, we seek the approximate

solutions, we have the fundamental matrix equation from Eq.(16)
(P‘OYD+?IYBID GDJA F, (20)

with
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1 0 1 -t
ol v ]

\/Zr(l)xg \/Er(z)xg \/Er(3)x§ Jr r(4) N r(5) 2

& o rd) r&)  rdhy |

Q) =

and with collocation points, we have

P, 0O 0 0 0 0 P, 0 0 0 0 0 F,
O P, 0 0 0 0 O P, 0 0 0 0 F
— 0 0 P 0 0 0 — 0O 0 P 0 0o 0| __
P, = 02 . P, = 12 ’F=F2
0 0 0 P, 0 0 0O 0 0 P, 0 0 F,
0 0 0 0 P, O O 0 0 0 P, 0 F,
(0 0 0 0 0 P] (0 0 0 0 0 P F, |
o B O DT -1 O AO
B] - s D ( ) 59 =
0 B 0 (DT)—I Al
and where

1 _4
P.() = R XA R Tt
li - O 1 ’ Oi(i)_ ti 1 s i 16 5/n B

2t, +2t -—1
15

1

\/Era)t% Jr r(z) Jr r(3) Jr r(4) LN re) 2
o e ) T r(lzl)

Q)=

1 0 -1 0 1 0 | 0 1 0 0 0 0]
o1 0 -3 0 5 002 000
-0 0 2 0 =8 0 1000300
00 0 4 -20 0 00 0 40
o0 0 O 8 0 000 0 O0 5
10 0 0 0 0 16 | 100 0 0 0 O]

Moreover, the matrix form for conditions can be written as:
00| U, O A’ 10
n@] [0 U, A o)
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Solving the new augmented matrix based on conditions, truncated Chebyshev coefficients

matrix are obtained as:

[0.5] [0.375]
0.5 0.5

A0 0 and Al = 0.125
0 0
0 0

L O . L O _

Hence, the solutions of the problem for N =5 become y;(t) =t and y;(¢)=¢t> which

are the exact solution of problem.

Example 2. Let us consider the following the systems of Volterra integro-

differential equation with weakly singular kernel

Yo+ 0+ ey 0+ 3,0 = | yto(_x))c bt 0,

Yo(&) =, () + o (t) ="y, (t) :j ,y/tl(_x))c dx+ f,(1),
where

fo(t) =2e" cos(t) + ' sin(¢) + cos(r) — -l‘ex—\/jo—S(XX)dx,

f,(t) = €' cos(t) — 2e" sin(t) — sin(z) —jde’

b Vi—X
with  y,(0)=1 and y,(0)=0 and exact solutions are y,(t)=e'cos(t) and

y,(t) = €' sin(¢) . Approximately solving these systems by present method for N =5,6,9

we obtain the numerical results in Table 1. Moreover, we display the absolute errors for

N =5,69,10 in Fig. 1 and Fig. 2.
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Table 1. Absolute errors for various N

N=5 N=6 N=9
t N° N! N° N! N° N!
0.2 0.3994E-5 0.1026E-4 0.6405E-6 0.2181E-6 0.2772E-10 0.6070E-10
0.4 0.178E-5 0.2896E-5 0.4452E-6 0.5959E-7 0.2240E-10 0.4397E-10

0.6  0.2981E-5 0.6477E-5 0.3803E-6 0.5870E-7 0.1753E-10 0.2801E-10
0.8  0.4341E-5 0.8624E-5 0.1015E-5 0.6360E-7 0.1839E-10 0.2368E-10

o
I Y

I i i |
0 01 0.2 03 04 05 06 07 08 09

Figure 1. Comparison of the absolute errors for Y (f) in Ex. 2

1 1 1 1
0 0.1 0.2 03 0.4 05 06 07 08 09

Figure 2. Comparison of the absolute errors for ,(¢) in Ex. 2

Example 3. We consider the Volterra integro-differential equation with weakly

singular kernel [7]

" 10"
y (x)+y(x)+ﬁ!ﬁ=f(x)

4
with y(0) = »'(0) =1. Here, if f(x) is chosen as 3+ x+x” + Tx, the exact solution is
/1

1+ x+x>. For N =4, we obtain the approximate solution for digits 20
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y,(x)=1+t+¢> +0.13521E —19£° —0.31881E —20¢" .

In [12], it is obtained the approximate solution for N =5 in [14]

y(x)=1+x+x>+0.1E —18x°

and we compare the absolute errors present method and Berstein series solution [12] in
Table 2.

Table 2. Comparision of Berstein method and present method

Exact Isik [14]  Present met.

solution (N =5) (N=4)
0.0 1.00 0.000E-0  0.200E-19
02 1.24 0.355E-18 0.200E-19
04 1.56 0.532E-18 0.000E-00
0.6 1.96 0.700E-18 0.000E-00
0.8 244 0.856E-18 0.000E-00
1.0 3.00 0.100E-18 0.000E-00

Example 4. Finally, we consider the following singular Volterra integral equation

[8]:

t—x

y(@)=¢' (1 + \/;erf(\/;))— j »(x) dx

which has the exact solution y(¢) = e'. We compare the maximal errors of Tau method

and present method in Table 3.

Table 3: Comparison of maximal error of Tau method and present method

Tau method [18] Present
N  Standart base method Legendre base method

5 0.673E-3 0.321E-3 0.313E-3 0.100E-5
10 0.381E-6 0.209E-6 0.222E-6 0.100E-12
15 0.541E-9 0.354E-9 0.459E-6 0.548E-16
20 0.648E-11 0.411E-11 0.459E-11 0.628E-20
25 0.714E-13  0.601E-13 0.586E-13 0.746E-24

5. Conclusion

We have introduced a numerical scheme for solving systems of integro-differential

equations with weakly singular kernel. The numerical scheme is based on collocation
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method with using the Chebyshev polynomials whose are orthogonal polynomial bases.
Some examples have been solved to illustrate the validity and efficiency of the proposed
technique. The examples show that the proposed numerical scheme produces the good
results and produce the desired accuracy only in a few terms with high accuracy. The
method is also quite straightforward to write computer code to construct a low-cost
scheme. Increasing the degree of approximation also causes the convergency of the
method. These facts motivate us to state the proposed method as a fast, reliable, valid and
powerful tool for solving weakly singular Volterra integral equations. The proposed
method can be transformed others singular equations by using some beneficial theorems

in [19].
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