
Haettepe Journal of Mathematis and Statistis

Volume 44 (2) (2015), 399 � 416

Interval estimation for the two-parameter

bathtub-shaped lifetime distribution based on

reords

A. Asgharzadeh

∗
, M. Abdi

†
and Shuo-Jye Wu

‡

Abstrat

In this paper, we study the estimation problems for the two-parameter

bathtub-shaped lifetime distribution based on upper reord values. Ex-

at on�dene intervals and exat joint on�dene regions for the pa-

rameters are onstruted. Approximate on�dene intervals and regions

are also disussed based on the asymptoti normality of the maximum

likelihood estimators. A simulation study is done for the performane

of all proposed on�dene intervals and regions. Two numerial exam-

ples with real data set and simulated data, are presented to illustrate

the methods proposed here.
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1. Introdution

The failure rate funtion is an important harateristi of a lifetime distribution and

the shapes of the failure rate funtions are qualitatively di�erent. In pratie, units in a

population are followed from atual birth to death, a bathtub-shaped failure rate funtion

is often seen. In reent years, some lifetime distributions with bathtub-shaped failure rate

funtion have been investigated by several authors. For example, Bebbington et al. [5℄,

Gurvih et al. [10℄, Haynatzki et al. [11℄, Hjorth [12℄, Mudholkar and Srivastava [15℄,

Pham and Lai [17℄, Smith and Bain [18℄, Wang [19℄ and Xie et al. [22℄. A reent aount

on bathtub-shaped failure rate funtions an be found in the review artile by Nadarajah

[16℄.

In this paper, we disuss the two-parameter lifetime distribution with bathtub-shaped

or inreasing failure rate funtion proposed by Chen [7℄. The umulative distribution

funtion (df) of this distribution is given by

(1.1) F (x) = 1− eλ(1−ex
β
), x > 0, λ, β > 0,

and hene the probability density funtion (pdf) is given by

f(x) = λβxβ−1e[x
β+λ(1−ex

β
)] x > 0, λ, β > 0.

The reliability funtion R(x) and hazard (failure rate) funtion H(x) of this distribution
are given, respetively, by

R(x) = eλ(1−ex
β
), x > 0, λ, β > 0,

and

H(x) = λβxβ−1ex
β

x > 0, λ, β > 0.

The parameter β is the shape parameter whih also a�ets the shape of the failure rate

funtion. When β < 1, the failure rate funtion of this distribution has a bathtub shape.

When β ≥ 1, this distribution has an inreasing failure rate (see, Chen [7℄ and Wu [21℄).

Let X1, X2, . . . be a sequene of independent and identially distributed (iid) random

variables with df F (x) and pdf f(x). An observation Xj is alled an upper reord value

if its value exeeds that of all previous observations. That is, Xj is an upper reord

values if Xj > Xi for every i < j. If {U(n), n ≥ 1} is de�ned by

U(1) = 1 and U(n) = min{j : j > U(n− 1), Xj > XU(n−1)},
for n ≥ 2, then the sequene {XU(n), n ≥ 1} provides a sequene of upper reord statistis.
The sequene {U(n), n ≥ 1} represents the reord times.

The de�nition of reord values was formulated by Chandler [6℄. A reord value or

reord statisti is the largest or smallest value obtained from a sequene of random

variables. The theory of reord values relies largely on the theory of order statistis. As

mentioned by Ahsanullah and Nevzorov [3℄ reords are very popular beause they arise

naturally in many �elds of studies suh as limatology, sports, mediine, tra�, industry

and so on. Suh reords are memorials of their time. The annals of reords re�et the

progress in siene and tehnology and enable us to study the evaluation of mankind

on the basi of reord ahievements in various areas of its ativity. For example, in

industry and reliability studies, many produts fail under stress. A wooden beam breaks

when su�ient perpendiular fore is applied to it, an eletroni omponent eases to

funtion in an environment of too high temperature, and a battery dies under the stress

of time. However, the preise breaking stress or failure point varies even among idential

items. Hene, in suh experiments, measurements may be made sequentially and only

the reord values are observed. Lee et al. [14℄ indiated that there are some situations
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in lifetime testing experiments in whih a failure time of a produt is reorded if it

exeeds all preeding failure times. These reorded failure times are the upper reord

value sequene. As mentioned by Ahmadi and Balakrishnan [1℄, there is a onnetion

between reord values and minimal repair proess, whih is as follows. Let X be a lifetime

of a omponent with df F (x) and X(m) denote the lifetime if m minimal repairs are

allowed. Then, X(m) has the same distribution as the m-th upper reord derived from

iid observations from F (x). For more details and appliations of reord values, see, for

example, Ahsanullah [2℄ and Arnold et al. [4℄.

The purpose of this paper is to onstrut the interval estimation for the parameters

of the bathtub-shaped distribution based on reord values. The rest of this paper is

organized as follows. Setion 2 provides the maximum likelihood estimators (MLEs) of

the parameters β and λ, and also establishes the approximate on�dene intervals and

region for the parameters. Furthermore, the exat on�dene intervals for the parameter

β and exat joint on�dene regions for the parameters β and λ are obtained by using

some pivotal quantities. Setion 3 onduts some simulations to study the performane of

the proposed on�dene intervals and regions. Setion 4 disusses two numerial examples

for illustration. Setion 5 makes some onlusions.

2. Main Results

In this setion, we will derive the approximate on�dene intervals and region for

the parameters based on the asymptoti normality of the MLEs. The exat on�dene

intervals for β and exat joint on�dene regions for β and λ will also be disussed.

2.1. Maximum Likelihood Estimation. Let XU(1) < XU(2) < · · · < XU(m) be the

�rst m observed upper reord values from two parameter bathtub-shaped lifetime dis-

tribution in (1.1). For notation simpliity, we will write Xi for XU(i). The likelihood

funtion is given by (see Arnold et al. [4℄)

L(β, λ) = f(xm)
m−1∏

i=1

f(xi)

1− F (xi)

= (λβ)meλ(1−ex
β
m )

m∏

i=1

xβ−1
i ex

β
i .

The log-likelihood funtion is then

l(β, λ) = lnL(β, λ)

= m lnλ+m ln β + λ(1− ex
β
m) + (β − 1)

m∑

i=1

lnxi +

m∑

i=1

xβ
i .

The MLEs of (β, λ) an be obtained by solving the likelihood equations

∂l(β, λ)

∂β
=
m

β
− λxβ

me
xβ
m ln xm +

m∑

i=1

ln xi +

m∑

i=1

xβ
i ln xi = 0,

and

∂l(β, λ)

∂λ
=
m

λ
+ (1− ex

β
m) = 0.

The approximate on�dene intervals and region for the unknown parameters have

been disussed by some authors. See for example, Doostparast et al. [8℄ and Gupta

and Kundu [9℄. Here we will use the asymptoti normality of the MLEs to onstrut
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the on�dene intervals and region for the parameters. To obtain the Fisher information

matrix, we need

∂2l(β, λ)

∂β2
= −m

β2
− λxβ

m(ln xm)2ex
β
m [1 + xβ

m] +

m∑

i=1

xβ
i (ln xi)

2,

∂2l(β, λ)

∂β∂λ
=
∂2l(β, λ)

∂λ∂β
= −xβ

m(lnxm)ex
β
m ,

and

∂2l(β, λ)

∂λ2
= −m

λ2
.

Under suitable regularity onditions, we know that

√
m(β̂−β, λ̂−λ)′ is approximately

bivariate normal with mean (0, 0) and ovariane matrix I−1(β, λ) evaluated at the MLEs

(β̂, λ̂), where

I(β, λ) = − 1

m





∂2l(β, λ)

∂β2

∂2l(β, λ)

∂β∂λ
∂2l(β, λ)

∂λ∂β

∂2l(β, λ)

∂λ2



 .

Thus, the approximate on�dene intervals for β and λ an be obtained in the usual

way. Furthermore, note that m[β̂ − β, λ̂ − λ]I(β̂, λ̂)[β̂ − β, λ̂ − λ]′ is asymptotially hi-

square distributed with 2 degrees of freedom. Now, using this result, the 100(1 − α)%
approximate joint on�dene region for (β, λ) is given by

{
(β, λ) : m[β̂ − β, λ̂− λ]I(β̂, λ̂)[β̂ − β, λ̂− λ]′ ≤ χ2

α(2)
}
,

where χ2
α(2) is the perentile of hi-square distribution with right-tail probability α and

2 degrees of freedom.

2.2. Exat Interval Estimations. Let X1 < X2 < · · · < Xm be the �rst m upper

reord values from the two-parameter bathtub-shaped lifetime distribution in (1.1). Set

Yi = − ln[1− F (Xi)] = λ(eX
β
i − 1), i = 1, 2, . . . ,m.

Then, Y1 < Y2 < · · · < Ym are the �rstm upper reord values from a standard exponential

distribution. Moreover, Z1 = Y1 and Zi = Yi − Yi−1, for i = 2, . . . ,m, are iid standard

exponential random variables (see Arnold et al. [4℄). Hene,

Vj = 2

j∑

i=1

Zi = 2 Yj

has a hi-square distribution with 2j degrees of freedom and

Uj = 2
m∑

i=j+1

Zi = 2 (Ym − Yj)

has a hi-square distribution with 2(m − j) degrees of freedom, where j = 1, . . . ,m− 1.
We an also �nd that Uj and Vj are independent random variables for eah j. Let

(2.1) Tj =
Uj/2(m− j)

Vj/2j
=

j Uj

(m− j)Vj
=

j

m− j

(
Ym − Yj

Yj

)
.

It is easy to show that Tj has an F distribution with 2(m− j) and 2j degrees of freedom
for j = 1, . . . ,m − 1. Therefore, using the pivotal quantities Tj , j = 1, . . . ,m − 1, we
an provide m− 1 on�dene intervals for β. To obtain the on�dene interval for β, we
further need the following lemmas.
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2.1. Lemma. For any 0 < c1 < c2, the funtion

g(β) =
ec

β
2 − 1

ec
β
1 − 1

is a stritly inreasing funtion of β for any β > 0.

Proof. The proof of Lemma 2.1 an be found in Chen [7℄. �

2.2. Lemma. Suppose that 0 < c1 < c2 < · · · < cm. Let

Tj(β) =
j

m− j

[
ec

β
m − 1

ec
β
j − 1

− 1

]
, j = 1, . . . ,m− 1.

Then for all j = 1, . . . ,m− 1,

(a) Tj(β) is stritly inreasing in β for any β > 0.
(b) For t > 0, the equation, Tj(β) = t has a unique solution in β > 0.

Proof. (a) By Lemma 2.1, it is easy to show that Tj(β) is a stritly inreasing

funtion of β.
(b) Sine the funtion Tj(β) is stritly inreasing in β > 0 with limβ→0 Tj(β) = 0

and limβ→∞ Tj(β) = ∞, then the lemma follows.

�

Let F(α),(υ1,υ2) denote the upper α perentile of F distribution with υ1 and υ2 degrees
of freedom. Lemma 2.2 an be used to onstrut m − 1 exat on�dene intervals for

the shape parameter β based on the pivotal quantities Tj(β), j = 1, 2, . . . ,m− 1. These
exat on�dene intervals are given in the following theorem.

2.3. Theorem. Suppose that X1 < X2 < · · · < Xm be the �rst m observed upper reord

values from the two-parameter bathtub-shaped distribution. Then, for any 0 < α < 1 and

for eah j = 1, 2, . . . ,m− 1,
(
ϕ(X1, . . . , Xm, F1−α

2
(2(m−j),2j)), ϕ(X1, . . . , Xm, Fα

2
(2(m−j),2j))

)
,

is a 100(1 − α)% on�dene interval for β, where ϕ(X1, . . . , Xm, t) is the solution of β
for the equation

j

m− j

[
eX

β
m − 1

eX
β
j − 1

− 1

]
= t.

Proof. From (2.1), we know that the pivot

Tj(β) =
j

m− j

[
eX

β
m − 1

eX
β
j − 1

− 1

]

,

has an F distribution with 2(m− j) and 2j degrees of freedom. Hene, the event

F1−α
2
(2(m−j),2j) <

j

m− j

[
eX

β
m − 1

eX
β
j − 1

− 1

]
< Fα

2
(2(m−j),2j),

is equivalent to the event

ϕ(X1, . . . , Xm, F1−α
2
(2(m−j),2j)) < β < ϕ(X1, . . . , Xm, Fα

2
(2(m−j),2j)).

This ompletes the proof. �
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Now, let us onsider another pivotal quantity to onstrut the on�dene interval for

parameter β as

W (β,m) =
1
m

∑m
i=1 Yi

[∏m
i=1 Yi

]1/m =
1
m

∑m
i=1(e

x
β
i − 1)

[∏m
i=1(e

x
β
i − 1)

]1/m .

It is easy to show that the distribution of W (β,m) does not depend on (β, λ) and hene

it provides a pivotal quantity for β. To derive the on�dene interval for β based on this

pivotal quantity, one need the following lemma.

2.4. Lemma. Suppose that 0 < c1 < c2 < · · · < cm. Let

W (β,m) =
1
m

∑m
i=1(e

c
β
i − 1)

[∏m
i=1(e

c
β
i − 1)

]1/m .

Then,

(a) W (β,m) is stritly inreasing in β for any β > 0.
(b) For t > 1, the equation, W (β,m) = t has a unique solution in β > 0.

Proof. (a) The proof an be found in Wu et al. [20℄.

(b) Sine the funtion W (β,m) is stritly inreasing in β > 0 with

limβ→0W (β,m) = 1 and limβ→∞W (β,m) = ∞, then the lemma follows.

�

Let Wα(m) be the upper α perentile of the distribution of the pivotal quantity

W (β,m). We have the following theorem.

2.5. Theorem. Suppose that X1 < X2 < · · · < Xm be the �rst m observed upper reord

values from the two-parameter bathtub-shaped distribution. Then, for any 0 < α < 1,

ψ(X1, . . . , Xm,W1−α
2
(m)) < β < ψ(X1, . . . , Xm,Wα

2
(m))

is a 100(1 − α)% on�dene interval for β, where ψ(X1, . . . , Xm, t) is the solution of β
for the equation

1
m

∑m
i=1(e

X
β
i − 1)

[∏m
i=1(e

X
β
i − 1)

]1/m = t.

Proof. Note that

P
(
W1−α

2
(m) < W (β,m) < Wα

2
(m)

)
= 1− α,

for any 0 < α < 1. Then, by Lemma 2.4, one an onstrut an exat on�dene interval

for β. �

It should be mentioned here that sine the exat distribution of the pivotal quan-

tity W (β,m) is too hard to derive algebraially, we need to ompute the perentiles of

W (β,m) by using Monte Carlo simulation. In Table 1, we present the upper perentiles

Wα(m) of W (β,m) for m = 2, 3, . . . , 20 and various values of α, over 50000 repliations.

Now, in order to derive the exat joint on�dene region for (β, λ), let

(2.2) S = Uj + Vj = 2Ym.

It is easy to show that S has a hi-square distribution with 2m degrees of freedom.

Furthermore, by Johnson et al. [13℄, Tj de�ned in (2.1) and S are independent for

eah j. Using the joint pivots (S, T1), . . . , (S, Tm−1), we an onstrut m− 1 exat joint

on�dene regions for (β, λ).
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Table 1. Upper perentile Wα(m) of W (β,m)

α

m 0.995 0.005 0.99 0.01 0.975 0.025 0.95 0.05 0.90 0.10

2 1.0000 7.1897 1.0000 4.9480 1.0001 3.2949 1.0003 2.4000 1.0013 1.7691

3 1.0004 4.9643 1.0010 3.9014 1.0028 2.8395 1.0061 2.2901 1.0131 1.8074

4 1.0028 4.2341 1.0043 3.5076 1.0092 2.7647 1.0161 2.2669 1.0296 1.8387

5 1.0071 3.4388 1.0100 3.0886 1.0182 2.5200 1.0277 2.1453 1.0461 1.8156

6 1.0096 3.2875 1.0149 2.8818 1.0253 2.4163 1.0382 2.0899 1.0586 1.7836

7 1.0169 2.9389 1.0227 2.6522 1.0344 2.2674 1.0489 1.9794 1.0725 1.7498

8 1.0207 2.8689 1.0276 2.5550 1.0433 2.2014 1.0608 1.9594 1.0862 1.7358

9 1.0278 2.7457 1.0352 2.4686 1.0513 2.1332 1.0684 1.9258 1.0955 1.7185

10 1.0325 2.6099 1.0425 2.3344 1.0607 2.0542 1.0788 1.8808 1.1066 1.6924

11 1.0362 2.4933 1.0452 2.2812 1.0641 2.0258 1.0836 1.8503 1.1107 1.6784

12 1.0417 2.4335 1.0528 2.2743 1.0702 2.0070 1.0922 1.8420 1.1209 1.6655

13 1.0462 2.3429 1.0574 2.1808 1.0762 1.9588 1.0991 1.8082 1.1292 1.6606

14 1.0530 2.2814 1.0658 2.1009 1.0842 1.9174 1.1059 1.7818 1.1349 1.6489

15 1.0546 2.2565 1.0650 2.0953 1.0886 1.9038 1.1091 1.7598 1.1404 1.6315

16 1.0623 2.1736 1.0733 2.0553 1.0940 1.8935 1.1155 1.7673 1.1456 1.6357

17 1.0641 2.1703 1.0768 2.0406 1.0979 1.8751 1.1194 1.7487 1.1482 1.6220

18 1.0679 2.1394 1.0792 2.0114 1.1001 1.8594 1.1235 1.7355 1.1544 1.6173

19 1.0779 2.1080 1.0873 1.9745 1.1071 1.8248 1.1300 1.7167 1.1607 1.6043

20 1.0753 2.0807 1.0883 1.9579 1.1096 1.8176 1.1322 1.7005 1.1635 1.5874

Let χ2
α(υ) be the upper α perentile of the χ2

distribution with υ degrees of freedom.

The following theorem provide m− 1 exat joint on�dene regions for (β, λ).

2.6. Theorem. Suppose that X1 < X2 < · · · < Xm be the �rst m observed upper

reord values from the two-parameter bathtub-shaped distribution. Then, for any j =
1, 2, . . . ,m−1, the following inequalities determine a 100(1−α)% joint on�dene region

for (β, λ):

ϕ
(
X1, . . . , Xm, F 1+

√
1−α
2

(2(m−j),2j)

)
< β < ϕ

(
X1, . . . , Xm, F 1−

√
1−α
2

(2(m−j),2j)

)
,

and

χ2
1+

√
1−α
2

(2m)

2(eX
β
m − 1)

< λ <
χ2

1−
√

1−α
2

(2m)

2(eX
β
m − 1)

.

where 0 < α < 1, and ϕ(X1, . . . , Xm, t) is the solution of β for the equation

j

m− j

[
eX

β
m − 1

eX
β
j − 1

− 1

]

= t.

Proof. From (2.2), we know that

S = 2λ(eX
β
m − 1),

has a hi-square distribution with 2m degrees of freedom, and it is independent of Tj for

eah j. Next, for 0 < α < 1, we have

P
(
F 1+

√
1−α
2

(2(m−j),2j)
< Tj < F 1−

√
1−α
2

(2(m−j),2j)

)
=

√
1− α,



406

and

P

(
χ2

1+
√

1−α
2

(2m)
< S < χ2

1−
√

1−α
2

(2m)

)
=

√
1− α.

From these relationships, we onlude that

P
(
F 1+

√
1−α
2

(2(m−j),2j)
< Tj < F 1−

√
1−α
2

(2(m−j),2j)
,

χ2
1+

√
1−α
2

(2m)
< S < χ2

1−
√

1−α
2

(2m)

)
= 1− α,

or equivalently

P

(
ϕ(X1, . . . , Xm, F 1+

√
1−α
2

(2(m−j),2j)
) < β <

ϕ(X1, . . . , Xm, F 1−
√

1−α
2

(2(m−j),2j)
) ,
χ2

1+
√

1−α
2

(2m)

2(eX
β
m − 1)

< λ <
χ2

1−
√

1−α
2

(2m)

2(eX
β
m − 1)

)

= 1− α.

This ompletes the proof. �

3. Simulation Results

In this setion, we arry out a Monte Carlo simulation to study the performane of

our proposed on�dene intervals and regions. In this simulation, we randomly generate

upper reord sample X1, X2, . . . , Xm from a two-parameter bathtub-shaped lifetime dis-

tribution with the values of parameters (β, λ) = (0.5, 0.02), (1, 0.1), and (1.2, 0.05) and
sample sizes m = 5, 7, 10, 15. We then ompute the 95% on�dene intervals and regions

using Theorems 2.3, 2.5, and 2.6. We also provide the approximate joint on�dene re-

gion obtained by the asymptoti normality of the MLEs. We repliate the proess 5000

times. We present, in Tables 2 and 3, the average on�dene lengths and on�dene

areas. The simulation results show that:

(1) The overage probabilities of the exat on�dene intervals for β and joint on-

�dene regions for (β, λ) are lose to the desired level of 0.95 for di�erent pa-

rameters and sample sizes. But, the overage probabilities of the approximate

joint on�dene region for (β, λ) are very low.

(2) The pivot W (β,m) works better than the pivots Tj(β), j = 1, . . . ,m − 1 to

establish on�dene interval for the parameter β. This is beause the average

on�dene lengths based on W (β,m) are smaller than those based on Tj(β),
j = 1, . . . ,m− 1.

(3) If we onsider m− 1 pivotal quantities T1(β), . . . , Tm−1(β) to establish the on-

�dene intervals for the parameter β, We �nd that the pivotal quantity Tj(β)
provides the shortest on�dene length when j is around [m

2
], where [y] denotes

the largest integer whih is less than or equal to y.
(4) From Table 3, we observe that in the most of ases onsidered, the �rst joint

pivot (S, T1) provides the smallest on�dene area for (β, λ). Thus, the �rst

joint on�dene region is the best exat joint on�dene region.

(5) In most of the ases onsidered, the approximate method does not work well to

establish the joint on�dene region for (β, λ). It provides the low overage prob-

abilities. Also, the average on�dene area based on the approximate method is

bigger than those obtained based on the exat methods.
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Table 2. The average on�dene length (CL) and overage probability

(CP) of the 95% on�dene interval for β

(β, λ)=( 0.5, 0.02) (β, λ)=( 1, 0.1) (β, λ)=( 1.2, 0.05)

m Method CL CP CL CP CL CP

5 W (β,m) 1.6223 0.947 3.7091 0.949 3.9695 0.952

T1(β) 6.6763 0.954 16.2102 0.948 18.1848 0.954

T2(β) 1.9591 0.956 5.1808 0.949 5.4815 0.946

T3(β) 1.9323 0.957 4.9852 0.952 5.6397 0.948

T4(β) 8.8491 0.951 15.1237 0.953 17.5400 0.951

7 W (β,m) 0.8227 0.953 2.0708 0.948 2.1691 0.953

T1(β) 5.0157 0.950 12.5267 0.952 13.2268 0.950

T2(β) 1.3491 0.951 3.2347 0.952 3.6846 0.943

T3(β) 1.0302 0.951 2.2803 0.951 2.6532 0.945

T4(β) 1.0676 0.950 2.6369 0.942 2.6851 0.945

T5(β) 1.4285 0.948 3.4875 0.953 4.0611 0.941

T6(β) 14.2993 0.950 21.7503 0.937 39.4215 0.948

10 W (β,m) 0.4918 0.951 1.1508 0.947 1.2793 0.957

T1(β) 3.9378 0.954 9.9073 0.950 10.1735 0.958

T2(β) 1.0393 0.943 2.4302 0.953 2.7124 0.949

T3(β) 0.6972 0.948 1.6400 0.950 1.8349 0.946

T4(β) 0.6120 0.954 1.3761 0.955 1.5010 0.947

T5(β) 0.6077 0.955 1.4188 0.948 1.5628 0.952

T6(β) 0.6669 0.946 1.5013 0.946 1.7014 0.948

T7(β) 0.7960 0.958 1.8017 0.950 2.0555 0.952

T8(β) 1.1632 0.954 2.8045 0.952 3.1162 0.955

T9(β) 6.7247 0.948 13.1327 0.947 15.3015 0.951

15 W (β,m) 0.3065 0.952 0.7895 0.950 0.8206 0.953

T1(β) 3.3448 0.950 7.8014 0.952 8.4577 0.947

T2(β) 0.7912 0.950 1.9128 0.941 2.0974 0.946

T3(β) 0.5138 0.950 1.1995 0.954 1.3766 0.948

T4(β) 0.4226 0.949 0.9857 0.947 1.1265 0.944

T5(β) 0.3960 0.946 0.9055 0.951 0.9934 0.955

T6(β) 0.3879 0.944 0.8782 0.947 0.9948 0.951

T7(β) 0.3795 0.946 0.8580 0.954 0.9915 0.951

T8(β) 0.3916 0.953 0.9160 0.950 1.0350 0.945

T9(β) 0.4071 0.952 0.9896 0.949 1.0614 0.946

T10(β) 0.4661 0.954 1.0737 0.937 1.1867 0.949

T11(β) 0.5410 0.947 1.1941 0.951 1.3402 0.948

T12(β) 0.6802 0.948 1.5637 0.944 1.7454 0.946

T13(β) 1.0401 0.949 2.5110 0.952 2.7780 0.949

T14(β) 5.5032 0.948 16.648 0.950 13.9555 0.957
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Table 3. The average on�dene area (CA) and overage probability

(CP) of the 95% on�dene region for (β, λ) obtained by the exat and

approximate methods.

(β, λ)=( 0.5, 0.02) (β, λ)=( 1, 0.1) (β, λ)=( 1.2, 0.05)

m Method CA CP CA CP CA CP

5 (S, T1) 0.0103 0.951 0.1252 0.952 0.0699 0.950

(S, T2) 0.0156 0.958 0.1609 0.956 0.0904 0.953

(S, T3) 0.0226 0.960 0.2172 0.937 0.1256 0.954

(S, T4) 0.0360 0.957 0.2989 0.954 0.1861 0.948

approx 0.0216 0.837 0.2041 0.896 0.1013 0.397

7 (S, T1) 0.0067 0.955 0.0826 0.952 0.0454 0.952

(S, T2) 0.0090 0.948 0.1001 0.952 0.0549 0.944

(S, T3) 0.0119 0.951 0.1196 0.955 0.0692 0.950

(S, T4) 0.0158 0.951 0.1435 0.946 0.0880 0.952

(S, T5) 0.0223 0.956 0.1848 0.955 0.1167 0.947

(S, T6) 0.0336 0.949 0.2507 0.938 0.1658 0.951

approx 0.0137 0.599 0.1376 0.596 0.0812 0.309

10 (S, T1) 0.0046 0.954 0.0549 0.944 0.0297 0.956

(S, T2) 0.0056 0.950 0.0640 0.956 0.0350 0.954

(S, T3) 0.0068 0.955 0.0712 0.953 0.0412 0.952

(S, T4) 0.0082 0.954 0.0808 0.956 0.0472 0.943

(S, T5) 0.0099 0.954 0.0940 0.946 0.0555 0.952

(S, T6) 0.0123 0.950 0.1100 0.947 0.0671 0.954

(S, T7) 0.0158 0.956 0.1325 0.953 0.0836 0.941

(S, T8) 0.0218 0.949 0.1652 0.956 0.1083 0.956

(S, T9) 0.0312 0.951 0.2193 0.946 0.1509 0.954

approx 0.0094 0.652 0.0952 0.666 0.0534 0.345

15 (S, T1) 0.0030 0.953 0.0367 0.947 0.0198 0.948

(S, T2) 0.0035 0.951 0.0399 0.945 0.0222 0.950

(S, T3) 0.0040 0.952 0.0441 0.954 0.0247 0.954

(S, T4) 0.0045 0.952 0.0473 0.950 0.0271 0.948

(S, T5) 0.0051 0.950 0.0508 0.955 0.0303 0.949

(S, T6) 0.0056 0.946 0.0555 0.944 0.0330 0.950

(S, T7) 0.0065 0.944 0.0613 0.947 0.0362 0.951

(S, T8) 0.0075 0.956 0.0664 0.946 0.0406 0.952

(S, T9) 0.0087 0.951 0.0745 0.946 0.0472 0.950

(S,T10) 0.0101 0.954 0.0845 0.946 0.0545 0.952

(S,T11) 0.0122 0.948 0.0991 0.954 0.0649 0.946

(S,T12) 0.0157 0.951 0.1180 0.944 0.0781 0.950

(S,T13) 0.0209 0.946 0.1501 0.949 0.1009 0.941

(S,T14) 0.0294 0.944 0.1941 0.942 0.1377 0.956

approx 0.0057 0.586 0.0591 0.591 0.0338 0.315
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Figure 1. PP-plot of the real data set in Example 4.1.

4. Illustrative Examples

To illustrate the use of our proposed estimation methods, the following two numerial

examples are disussed.

4.1. Example. (Real data set) Here we onsider the real data of the amount of

annual rainfall (in inhes) reorded at the Los Angeles Civi Center for the 50 years,

from 1959 to 2009. (see the website of Los Angeles Almana: www.laalmana.om/

weather/we08aa.htm) The data are as follows:

8.180 4.850 18.790 8.380 7.930 13.680 20.440 22.000 16.580

27.470 7.740 12.320 7.170 21.260 14.920 14.350 7.210 12.300

33.440 19.670 26.980 8.960 10.710 31.280 10.430 12.820 17.860

7.660 2.480 8.081 7.350 11.990 21.000 7.360 8.110 24.350

12.440 12.400 31.010 9.090 11.570 17.940 4.420 16.420 9.250

37.960 13.190 3.210 13.530 9.080

We hek the validity of the two-parameter bathtub-shaped distribution based on the

parameters β̂ = 0.4721 and λ̂ = 0.0212 using the Kolmogorov-Smirnov (K-S) test. It

is observed that the K-S distane is 0.1385 with a orresponding p-value 0.2715. This

indiates that the two-parameter bathtub-shaped distribution provides a good �t to the

data. Figure 1 also shows the probability plot (PP) of the data. This �gure supports our

onlusion. During this period, we observe the following seven upper reord values:

8.18 18.79 20.44 22.00 27.47 33.44 37.96

The MLEs of β and λ are β̂ = 0.432798 and λ̂ = 0.0566, respetively. Let us now

obtain the approximate joint on�dene region. Based on the result in Setion 2.1, a
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Figure 2. The 95% approximate joint on�dene region in Example 4.1

95% approximate joint on�dene region is the ellipse

A =

{
(β, λ) : m

(
β̂ − β

λ̂− λ

)
′ [

340.3978 312.4234
312.4234 311.9288

](
β̂ − β

λ̂− λ

)
− 5.9991 ≤ 0

}
,

where m = 7. This ellipse is provided in Figure 2. The area of this approximate joint

on�dene region is 0.0291. Now, we use the methods proposed in Setion 2.2 to onstrut

the exat on�dene intervals for β and exat joint on�dene region for (β, λ). To obtain
the 95% on�dene intervals for β, we onsider the pivotsW (β,m), T1(β), . . . , T6(β). We

need the perentiles

W0.025(7) = 2.2674, W0.975(7) = 1.0344, F0.025(12,2) = 39.41462,

F0.975(12,2) = 0.1962375, F0.025(10,4) = 8.843881, F0.975(10,4) = 0.2237967,

F0.025(8,6) = 5.599623, F0.975(8,6) = 0.2149754, F0.025(6,8) = 4.651696,

F0.975(6,8) = 0.1785835, F0.025(4,10) = 4.468342, F0.975(4,10) = 0.1130725,

F0.025(2,12) = 5.095867, and F0.975(2,10) = 0.0253713.

Here, the perentiles of W0.025(7) and W0.975(7) are obtained from Table 1. By Theorems

2.3 and 2.5 and using the S-PLUS pakage, the 95% on�dene intervals and orrespond-

ing on�dene lengths for β are given in Table 4.

From the simulation result in Setion 3, we know that, on the average, the pivot

W (β,m) works better than the pivots Tj(β), j = 1, . . . , 6. It is not the best one in this

example beause the result here is based on only one sample. Among the pivots Tj(β), j =
1, . . . , 6, we observe that, in this example, the pivot T4(β) provides the shortest on�dene
interval length and hene, (0.3723, 0.5095) is an optimal 95% on�dene interval for β.
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Table 4. The 95% on�dene interval (CI) for β and orresponding

on�dene length (CL)

Pivot CI CL

W (β,m) (0.3859,0.6861) 0.3001

T1(β) (0.4100,1.2874) 0.8774

T2(β) (0.3909,0.9163) 0.5254

T3(β) (0.3811,0.6094) 0.2283

T4(β) (0.3723,0.5095) 0.1372

T5(β) ( 0.3511,0.5321) 0.1810

T6(β) ( 0.3214, 0.6568) 0.3354

To obtain the 95% joint on�dene regions for (β, λ), we need the perentiles

F0.0127(12,2) = 78.15579, F0.9873(12,2) = 0.15572, F0.0127(10,4) = 12.79912,

F0.9873(10,4) = 0.179534, F0.0127(8,6) = 7.37466, F0.9873(8,6) = 0.1699301,

F0.0127(6,8) = 5.884774, F0.9873,(6,8) = 0.135599, F0.0127(4,10) = 5.569966,

F0.9873,(4,10) = 0.07813, F0.0127(2,12) = 6.421784, F0.9873,(2,10) = 0.01279496,

χ2
0.0127(14) = 28.37037, and χ2

0.9873(14) = 4.888863.

By Theorem 2.6 and using the S-PLUS pakage for solving non-linear equation, we obtain

the following 95% joint on�dene regions for (β, λ) based on the joint pivots (S, Tj),
j = 1, . . . , 6:

A1 =

{
(β, λ) : 0.4091 < β < 2.1540,

4.888863

2(e(37.96)β − 1)
< λ <

28.37037

2(e(37.96)β − 1)

}
,

A2 =

{
(β, λ) : 0.3882 < β < 1.1574,

4.888863

2(e(37.96)β − 1)
< λ <

28.37037

2(e(37.96)β − 1)

}
,

A3 =

{
(β, λ) : 0.3792 < β < 0.6847,

4.888863

2(e(37.96)β − 1)
< λ <

28.37037

2(e(37.96)β − 1)

}
,

A4 =

{
(β, λ) : 0.3709 < β < 0.5474,

4.888863

2(e(37.96)β − 1)
< λ <

28.37037

2(e(37.96)β − 1)

}
,

A5 =

{
(β, λ) : 0.3496 < β < 0.5779,

4.888863

2(e(37.96)β − 1)
< λ <

28.37037

2(e(37.96)β − 1)

}
,

A6 =

{
(β, λ) : 0.3206 < β < 0.7445,

4.888863

2(e(37.96)β − 1)
< λ <

28.37037

2(e(37.96)β − 1)

}
.

Figure 3 shows the above joint on�dene regions for parameters β and λ. The areas

of above joint on�dene regions are 0.0073, 0.0109, 0.0128, 0.0145, 0.0210, and 0.0331,

respetively. Thus, in this example, A1 is the optimal joint on�dene region (β, λ) sine
the joint pivot (S, T1) provides the smallest on�dene area. Note that the on�dene

areas based on all the joint pivots (S, Tj), j = 1, . . . , 5 are all smaller than the area based

on the approximate method. However, the area based on joint pivot (S, T6) is larger than
that based on the approximate method.
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Figure 3. The 95% joint on�dene region for (β, λ) in Example 4.1
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Figure 4. The 95% approximate joint on�dene region in Example 4.2

4.2. Example. (Simulated data set) Let us onsider the �rst four upper reord

values simulated from the two-parameter bathtub-shaped distribution with β = 1.2 and

λ = 0.05. The simulated data are as follows:

1.351052 1.989847 3.030312 3.821197

The MLEs of β and λ are β̂ = 0.8039041 and λ̂ = 0.2237688, respetively. For 95%

approximate joint on�dene region, we have the ellipse

B =

{

(β, λ) : m

(
β̂ − β

λ̂− λ

)
′ [

21.19736 18.58491
18.58491 19.97105

](
β̂ − β

λ̂− λ

)

− 5.9991 ≤ 0

}

,

where m = 4. The ellipse is provided in Figure 4. The area of above joint on�dene

region is 0.5331. To obtain the 95% on�dene intervals for β, we need the perentiles

W0.025(4) = 2.7647, W0.975(4) = 1.0092, F0.025(6,2) = 39.33146,

F0.975(6,2) = 0.137744, F0.025(4,4) = 9.60453, F0.975(4,4) = 0.1041175,

F0.025(2,6) = 7.259856 and F0.975(2,6) = 0.0254249.

By Theorems 2.3 and 2.5 and using the S-PLUS pakage, the 95% on�dene intervals

for β are given in Table 5.

To obtain the 95% joint on�dene regions for (β, λ), we need the perentiles

F0.0127(6,2) = 78.07254, F0.9873(6,2) = 0.101436, F0.0127(4,4) = 14.02461,

F0.9873(4,4) = 0.0713032, F0.0127(2,6) = 9.858393, F0.9873(2,6) = 0.012809,

χ2
0.0127(8) = 19.4347, and χ2

0.9873(8) = 1.768713.

One an obtain the 95% joint on�dene regions for (β, λ) as follows:

B1 =

{
(β, λ) : 1.0427 < β < 1.8677,

1.768713

2(e(3.821197)β − 1)
< λ <

19.4347

2(e(3.821197)β − 1)

}
,
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Table 5. The 95% on�dene interval (CI) for β and orresponding

on�dene length (CL)

Pivot CI CL

W (β,m) (0.9705,1.2487) 0.2782

T1(β) (1.0431,1.4578) 0.4147

T2(β) (1.0130,1.1272) 0.1142

T3(β) (0.9124,1.1999) 0.2875

Figure 5. The 95% joint on�dene region for (β, λ) in Example 4.2

B2 =

{
(β, λ) : 1.0126 < β < 1.1802,

1.768713

2(e(3.821197)β − 1)
< λ <

19.4347

2(e(3.821197)β − 1)

}
,

B3 =

{
(β, λ) : 0.9119 < β < 1.3032,

1.768713

2(e(3.821197)β − 1)
< λ <

19.4347

2(e(3.821197)β − 1)

}
.

Figure 5 shows the above joint on�dene regions. The areas of the above joint on�dene

regions are 0.05005, 0.0200, and 0.0238, respetively. Thus, in this example, B2 is the

optimal joint on�dene regions for parameters β and λ.

5. Conlusions

The subjet of reord values has reeived attention in the past few deades. The

two-parameter bathtub-shaped lifetime distribution an be widely used in reliability ap-

pliations beause of its failure rate funtion. We study the interval estimation of pa-

rameters of the two-parameter bathtub-shaped distribution based on reord values. We
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provide three theorems based on the method of pivotal quantity to establish the exat

on�dene intervals and regions for the parameters. Two numerial examples are used to

illustrate the proposed methods, and we also assess the on�dene intervals and regions

by performing a Monte Carlo simulation. The simulation results provide us some idea to

hoose the optimal pivots for onstruting on�dene intervals and regions.
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