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Abstract 

In this study, the validity, distribution and structure of three turbot species, Scophthalmus 

maeoticus, S. maximus, S. rhombus, belong to Scophthalmidae family in Turkish, Bulgarian and 

Russian coastal waters were determined with mtDNA sequencing of Cytochrome c oxidase subunit 

III (COIII). The sequencing of the COIII region revealed 8 bp variable and 6 bp parsimony 

informative sites between all turbot species. The overall genetic and haplotype diversities among 

all turbot species were found to be 0.004109 and 0.7655, respectively. Genetic distance analysis 

showed that the highest nucleotide differences was observed between S. maximus and S. rhombus 

species with a value of 0.09620 and, the lowest value (0.02482) was observed between S. maximus 

and S. maeoticus species. Neighbor Joining and Maximum Parsimony phylogenetic approaches 

resulted in the similar tree topologies that S. maximus and S. maeoticus were found as sister group, 

whereas S. rhombus was more divergent from this group. The mtDNA COIII gene is a useful 

genetic marker for species specific identification of the genus Scophthalmus due to its inter-specific 

heterogeneity producing a species-specific pattern. In morphological analyses, S. rhombus was 

most differentiated from S. maximus and S. maeoticus. The genetic data was supported by the 

detected morphometric variations among the turbot species. 
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Introduction 

The Scophthalmidae are a family of sinistral flatfish found in the North Atlantic Ocean, Baltic Sea, 

Mediterranean Sea, Black Sea and Marmara Sea are important species in the world due to their 

economic and ecological value (Chanet, 2003). Fishes of this family are known commonly as 

turbots which may exceed 1 m of length and 20 kg of weight (Froese & Pauly, 2018). Colors of 

these species are variable and they can adapt at colors of their environment. Scophthalmid fishes 

are benthic marine species, living on sandy and muddy bottoms, and younger individuals tend to 

live in shallower areas. These species generally feed on demersal and pelagic fish species, 

crustaceans and molluscs; the feeding ratio decreases during the spawning period and becomes 

more intensive in autumn and winter (Slastenenko, 1956; Karapetkova, 1980; Ivanov & Beverton, 

1985). 

 In the world, the Scophthalmidae family is represented by 9 species (Scophthalmus 

maximus, S. maeoticus, S. rhombus, S, aquosus, Lepidorhombus whiffiagonis, L. boscii, 

Zeugopterus punctatus, Z. regius, Phrynorhombus norvegicus) within 4 genera, Scophthalmus, 

Lepidorhombus, Zeugopterus, Phrynorhombus (Nelson, 1994). Scophthalmidae family is 

represented with three species (Scophthalmus maximus (Linnaeus, 1758), S. maeoticus (Pallas, 

1814), S. rhombus (Linnaeus, 1758) in the Black and Marmara Seas (Nelson, 1994; Turan, 2007). 

Scophthalmus maximus, S. maeoticus and S. rhombus are closely related congeneric species (Pardo 

et al., 2005; Turan, 2007; Azevedo et al., 2008) which show a similar distributional range (Blanquer 

et al., 1992; Pardo et al., 2001) and generally considered and excepted that there is one species, 

Scophthalmus maximus, exist in the Black Sea and Marmara Sea (Muus & Dahlström, 1978; Suziki 

et al., 2004). Unfortunately, the argument on the existence of the number of the species in these 

waters are still ongoing issue and need clarification.  

 In the Black and Marmara Seas there is a dilemma on the existence of the number of turbot 

species (Evseenko, 2003; Voronina, 2010; Froese & Pauly, 2018). The turbot, Scophthalmus 

maximus (Linnaeus, 1758), formerly recognized as Psetta maxima (Bailly & Chanet, 2010), 

distributed in the Northeast Atlantic, throughout the Mediterranean and along the European coasts 

to Arctic Circle as well as most of the Baltic Sea (Prado et al. 2018). The Black Sea brill, 

Scophthalmus maeoticus (Pallas, 1814), distributed in the Black Sea, was considered as a synonym 

of S. maximus by Bailly & Chanet (2010). Eschmeyer (2011) spelled a specific epithet as maeotica 

and accepted as S. maeoticus. The brill, Scophthalmus rhombus (Linnaeus, 1758), distributed in 

the Eastern Atlantic, Norway to Morocco and reported from Iceland (Jonsson, 1992), throughout 

the Mediterranean and Black Sea. Turan et al. (2016) reported that S. rhombus populations were 

seriously declined and rarely found in the Black Sea and Marmara Sea due to overfishing, habitat 

degradation and pollution and should be taken into consideration to be Near Threatened (NT) in 

the IUCN Red List of Threatened Species.  
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 Molecular genetic studies on mtDNA have demonstrated useful in order to determine 

hypotheses about the phylogeny and phylogeography of marine species (Meyer, 1993; Avise, 1994; 

Turan et al. 2015a). The pattern of maternal inheritance and rapid rate of evolutionary change of 

mtDNA compared to nuclear DNA make it a suitable tool for genetic studies among taxa of several 

fish groups at multiple taxonomic levels (Kocher & Stepien, 1997; Zardoya et al., 1999; Durand et 

al., 2002). Sequence analysis of mtDNA regions may be a quick tool to reveal phylogenetic 

relationships of marine species (Avise, 1994; Tabata & Taniguchi, 2000; Turan et al. 2008). Since 

different regions of mtDNA evolve at different rates, specific mtDNA regions have been targeted 

for inter and intra specific variation (Hauser et al. 2001; Mohindra et al. 2007; Turan et al. 2015b).  

 In the present study, the validity, distribution and phylogenetic relationships of three turbot 

species, Scophthalmus maeoticus, S. maximus, S. rhombus, belong to Scophthalmidae family in the 

Black and Marmara Seas comprising Turkish, Bulgarian and Russian coasts were investigated with 

mitochondrial Cytochrome c oxidase subunit III (COIII) gene sequence data. 

Materials and Methods 

Sampling 

S. maximus specimens were collected from three locations (at fishing ports) throughout the species’ 

distributional range, comprising Trabzon and Düzce and Marmara Sea from Turkish Coasts, Varna 

Coast from Bulgaria and Sevastopol Coast from Russia. S. maeoticus specimens were collected 

from Trabzon, Düzce and Marmara Sea from Turkish Coasts. S. rhombus specimens were only 

found and collected from only the Marmara Sea (Fig. 1). All the specimens were sampled in winter 

season of 2013-2014. All samples were put in plastic bags individually and frozen at -20 °C until 

they were transported to the laboratory.  

 

Figure 1. Sampling locations of turbot species analysed. 
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Morphology 

Meristic characters commonly used to describe Scopthalmidae species such as dorsal fin, caudal 

fin, anal fin, ventral fin, pectoral fin, back pectoral fin, gill rakers number, vertebra numbers were 

examined. Moreover, morphological characters that differentiate the species were also used as 

illustrated in Figure 2.   

 

Figure 2. Morphometric distances between the numbers were taken as morphometric characters. 

Fish drawings is from Froese & Pauly (2018) 

Most of the variability in morphological characters is due to size differences (Junquera & 

Perez-Gandaras, 1993, Turan, 1999). Therefore, shape analysis should be free from the effect of 

size to avoid misinterpretation of the results (Strauss, 1985). Therefore allometric size correction 

method (Elliott et al., 1995) was used to remove the effect of size variation. Principal component 

analysis (PCA) were used for detecting morphological characters which from differences among 

populations. Discriminant function analysis (DFA) were used for distinguishing morphological 

differences between populations (Turan, 1999). Univariate analysis of variance (ANOVA) was 

used to compare the variation between size-adjusted characters. SPSSv23 and SYSTATv13 were 

used for all statistical analysis.  

Genetic analysis 

All tissue samples were stored at -20 °C and 95 % ethanol till the analysis. Total DNA from all fish 

was extracted from the muscle using the standard phenol: chloroform: isoamyl alcohol procedure 
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(Sambrook et al., 1989). PCR amplification of the mitochondrial COIII gene was carried out using 

the universal primers (Valles-Jiménez, 2005): 

COIII-F: 5’- AGC CCA TGA CCT TTA ACA GG -3’ 

COIII-R: 5’- GAC TAC ATC AAC AAA ATG TCA GTA TCA -3’ 

Polymerase chain reactions were conducted by using a reaction volume of 50 µl containing 

5 units of Taq polymerase (Thermo scientific), 2 mM of each primer, 10 mM dNTPs (Thermo 

scientific), 25 mM MgCl2 (Thermo scientific), 10 mM Tris-HCl pH 8.8, 50 mM KCI and 1 µl 

template DNA (~10_25 ng). The amplification was performed with pre-denaturation at 95°C for 1 

min followed by 5 cycles of denaturation at 94°C for 30 s, 50°C for 30 s, and 72°C for 45 s for 30 

cycles and followed by a final extension for 7 min at 72 °C. After PCR amplification, 4 µl sample 

of each PCR product was controlled in 1.5% agarose gels. Quantitation of the PCR product was 

completed using spectrophotometer. The DNA sequencing was attempted to determine the order 

of the nucleotides of a gene. The chain termination method by Sanger et al. (1977) was applied 

with Bigdye Cycle Sequencing Kit V3.1 and ABI 3130 XL genetic analyzer.  

Sequence alignment and genetic analysis 

The initial alignments of partial COIII sequences were performed with Clustal W program 

(Thompson et al. 1994) and final alignment was completed manually with BioEdit (Hall, 1999). 

MtDNA sequence data were analyzed to assess levels of genetic variation and to determine 

nucleotide composition for each taxon using MEGA 6 (Tamura et al. 2011).  Modeltest (Posada & 

Crandall, 1998) was used to determine the best-fit model of DNA evolution. Molecular 

phylogenetic analyses and molecular phylogenetic trees were conducted using MEGA version 6 

(Tamura et al. 2011). A distance-based method as neighbor joining (NJ) (Saitou & Nei, 1987) and 

a cladistic phylogenetic tree as maximum parsimony (MP) criterion were used. The robustness of 

the internal branches of trees was assessed by bootstrapping (Felsenstein, 1985) with 1000 

replicates. One species from the Solidae family was included in the molecular phylogenetic trees 

and rooted as an outgroup species Solea senegalensis from published sequences in GenBank under 

accession number, AB270760. 

Results  

Genetic results 

There were 8 variable and 557 conservative nucleotides of which 6 were parsimony informative 

over 565 bp sequences. The average nucleotide composition was 23.01% for A, 28.80% for T, 

19.77% for G and 28.41% for C. The Jukes-Cantor (Jukes-Cantor, 1969) model was determined to 

be the best model for our dataset. The mean genetic diversity between and within species was 

calculated as 0.004109 and 0.000446, respectively. The sequence analysis of COIII revealed 6 

different haplotypes which were not shared between any species (Table 1). Average haplotype 

diversity between populations was found to be 0.7655. The minimum spanning tree showing the 

phylogenetic relationships among the COIII haplotypes was given in Figure 3. Ancestral haplotype 

(Hap_6) was only found in S. rhombus. The distribution of the haplotypes in the tree generally 

reflects the species-specific distribution of the samples. 
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Figure 3. Minimum spanning tree that shows the relationships among the haplotypes. 

The matrix of pairwise genetic distances within species and between species are presented 

in Table 2. Intra-specific genetic diversity was not observed within S. rhombus specimens while 

highest (0.000709) was found within S. maeoticus specimens. The lowest genetic distance 

(0.002482) was observed between S. maximus and S. maeoticus while the highest (0.009620) was 

observed between S. rhombus and S. maximus. 

Table 1. The number of haplotype and its distribution among the species. 

Haplotypes S. maeoticus S. maximus S. rhombus Total 

Hap 1  

Hap 2  

Hap 3  

Hap 4  

Hap 5  

Hap 6  

8   8 

1   1 

1   1 

 8  8 

 2  2 

  10 10 

Total 10 10 10 30 
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Table 2. The matrix of intra-specific genetic divergence given in bold (transversal diagonal) and 

pairwise genetic distances between species with statistical significance. ***, P<0.001.  

 S.maeoticus S.maximus S.rhombus 

S. maeoticus 0.000709 

S. maximus 0.002482***                 0.000630 

S. rhombus 0.007471***                 0.009620***                 0.000000               

  

Neighbor Joining and Maximum Parsimony phylogenetic approaches resulted in the similar 

tree topologies. In the both Neighbor Joining and Maximum Parsimony phylogenetic trees (Figure 

4, 5), two phylogenetic nodes were detected; in the first node, S. rhombus was grouped separately. 

In the second node two branches were detected; S. maximus and S. maeoticus were grouped 

together. 

 
Figure 4. Neighbor joining phylogenetic tree based on COIII sequences. The tree was rooted using 

the outgroup species S. senegalensis. Numbers on nodes indicate the bootstrap values. Fish 

drawings: S. maximus, S. rhombus and S. senegalensis is from Froese & Pauly (2018) and S. 

maeoticus is from Zaharia (2002). 
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Figure 5. Maximum parsimony tree phylogenetic tree based on COIII sequences. The tree was 

rooted using the outgroup species S. senegalensis. Numbers on nodes indicate the bootstrap values. 

Fish drawings: S. maximus, S. rhombus and S. senegalensis is from Froese & Pauly (2018) and S. 

maeoticus is from Zaharia (2002). 

 

Morphological results 

The range of the meristic characters used to differentiate turbot species is given in Table 3. Dorsal 

fin ray number varied between 60 to 69 for S. maximus, 59 to 76 for S. maeoticus and 72 to 81 for 

S. rhombus. Anal fin ray number varied between 41 to 52 for S. maximus, 42 to 51 for S. maeoticus 

and 53 to 61 S. rhombus. Pectoral fin ray number varied between 9 to 14 for all species. Ventral 

fin ray number varied between 5 to 7 for all species. The gill raker number and vertebra number of 

all species were found different ranges from each other (Table 3). 

Table 3. The range of the meristic characters observed in turbot species 

Species N DFR  PFR AFR VFR BPFR CFR GRN VN 

S. maximus 158 60-69 10-14 41-52 6-7 10-14 15-22 13-17 30-32 

S. maeoticus 162 59-76 10-13 42-51 6 10-13 15-19 14-17 30-31 

S. rhombus 25 72-81 10-12 53-61 6 10-12 12-18 15-18 36-38 
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DFR: Dorsal fin ray, PFR: Pectoral fin ray, AFR: Anal fin ray, VFR: Ventral fin ray, BPFR: Back 

pectoral fin ray, CFR: Caudal fin ray, GRN: Gill raker number VN: Vertebra number, N: number 

of individuals analyzed.  

In PCA, 27 principal components (PCs), which contain the percentage of total variance of all 

variables, were produced, and 52.10 and 18.79 % of the total variation was presented in the first 

and second PCs. Morphometric characters generally highly contributed in differentiation, and 

meristic characters which are anal fin ray, back pectoral fin rays, vertebra numbers, dorsal fin rays 

were more efficient to differentiate turbot species (Table 4). In discriminant function analysis, the 

overall random assignment of individuals into their original group was 100%, showing a clear 

differentiation of species from each other.  

Table 4. Contribution of each morphological character on the main principal components that 

played a role in discriminating each species.  

 

Variable 

Component 

1 2 3 4 

1_14 0.986 -0.152 0.015 -0.019 

1_15 0.985 -0.154 0.015 -0.005 

3_8 0.985 -0.144 -0.020 -0.015 

7_9 0.985 -0.161 0.025 -0.009 

8_14 0.984 -0.148 -0.014 -0.013 

1_13 0.984 -0.155 0.017 -0.003 

2_4 0.984 -0.164 0.027 -0.009 

2_14 0.983 -0.157 0.017 -0.018 

3_14 0.983 -0.150 -0.006 -0.007 

1_12 0.981 -0.158 -0.010 0.003 

5_6 0.980 -0.156 -0.019 -0.013 

10_11 0.980 -0.142 -0.008 -0.013 

Linea L. 0.970 -0.151 0.037 -0.011 

1_2 0.970 -0.132 -0.010 -0.026 

BVFR 0.412 0.740 -0.417 0.006 

D_O 0.277 0.726 0.495 0.057 

VN -0.383 -0.717 0.404 -0.062 

PFL 0.209 0.712 0.255 -0.045 

DFR -0.360 -0.699 0.354 -0.073 

ID 0.227 0.683 0.378 0.087 

HL 0.404 0.670 0.495 0.018 

AFR -0.457 -0.630 0.462 -0.080 

PFR 0.189 0.486 -0.364 -0.006 

ED 0.203 0.469 0.219 -0.276 

M_E 0.114 0.566 0.623 -0.135 
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GRN 0.123 -0.486 0.536 0.096 

VFR 0.080 -0.095 0.104 0.791 

CFR 0.048 0.132 0.071 0.577 

 

In phylogenetic tree showed morphological relationship among turbot species, S. maximus 

and S. maeoticus were branched together in the same nod. On the other hand, S. rhombus was found 

to be separated from other two turbot species (Figure 6). 

 

Figure 6. Systematic relationship of Scophthalmus maximus, S. maeoticus and S. rhombus based 

on morphometric and meristic characters. 

Discussion 

The phylogenetic relationships of three commercially important turbot species belongs to 

Scophthalmidae family (Scophthalmus maximus, S. maeoticus and S. rhombus) from Turkish and 

Bulgarian coasts were investigated based on mtDNA COIII gene sequencing data in the present 

study. The mean intra-specific genetic diversity was found to be 0.000446 and the mean inter-

specific genetic diversity was found to be 0.004109. The mean genetic divergence was low 

(0.00456). Feng et al. (2005) analyzed phylogenetic relationships of 10 flatfish species (Psetta 

maxima, Platichthys flesus, Solea solea, Solea senegalensis, Microchirus variegatus, Monochirus 

hispidus, Synaptura kleini, Paralichthys olivaceus, Pseudorhombus cinnamomeus and Kareius 

bicoloratus) belongs to the Pleuronectiformes order on the basis of 16S rRNA sequencing data and 

found genetic divergence values between these species ranged from 0.0141 to 0.2639. Karan & 

Turan (2019) reported significant genetic divergence (FST, 0.001593) based on COIII region of 

mitochondrial DNA between populations of S. maeoticus collected from the Black Sea and 

Marmara Sea. Feng et al. (2005) also reported that the turbot Psetta maxima and the thickback sole 

Microchirus variegatus has the genetically closer relationship (0.0395). Additionally, Feng et al. 

(2005) found genetic divergence of P. maxima from the other flatfish species, The European 

flounder Platichthys flesus, the common sole Solea solea, the whiskered sole Monochirus hispidus, 

the Klein's sole Synaptura kleinii and the Senegalese sole Solea senegalensis, to be 0.1492, 0.1798, 

0.1969, 0.1734 and 0.1785, respectively. When we compare the mean genetic divergence finding 

with other flatfish species reported by Feng et al. (2005), genetic divergence is lower at turbots in 

the present study. It was thought that these turbot species may be distributed in close locations to 

each other in Turkish marine waters and may happen limited gene flow between them. On the other 

hand, similar biological and ecological features of the species together with their low mean genetic 

divergence may support the production of natural F1 hybrids from inter-specific mating events in 
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the areas where they are sympatric. However, owing to the maternal inheritance of mtDNA in 

vertebrates, mitochondrial markers can reveal only the maternal genome sequence. These markers 

cannot elucidate inter-specific hybridization occurrences that may happen between species with 

covering reproductive, biological, and ecological features (Turan, 2008).  

The genetic differentiation of S. rhombus was found to be relatively higher than S. maximus 

and S. maeoticus that was also found statistically significant (P < 0.001). Moreover, our results 

indicated that the relationship between S. maeoticus and S. maximus was closer than that both 

between S. rhombus and S. maeoticus, and S. rhombus and S. maximus, and confirmed the presence 

of three turbot species in Turkish marine waters. Pardo et al. (2005), investigated phylogenetic 

relationships of a total of 30 species belongs to 7 flatfish family including Scopthalmidae, 

Pleuroenectidae, Paralichthyidae, Cynoglossidae, Soleidae, Bothidae and Achiridae from the North 

East Atlantic, Southwest Atlantic and Indian Ocean inferred from 16S rRNA gene and found the 

close relationship between S. maximus and S. rhombus. Azevedo et al. (2008) studied phylogenetic 

analysis of 19 species belongs to the families of the Pleuronectiformes order (Achiridae, Bothidae, 

Cynoglossidae, Paralichthyidae, Pleuronectidae, Scophthalmidae and Soleidae) from the South 

America coasts based on 12S and 16S rRNA combined sequence data and found the close 

relationship between S. rhombus and S. maximus, as well. As a result, our findings about the 

relationship between S. rhombus and S. maximus were not supported by above mentioned studies. 

This case may be due to the fact that above mentioned studies were conducted by different gene, 

such as 16S rRNA, in different seas far away from Turkish marine waters and disadvantages of 

16S rRNA in discriminating closely related species (Seyhan & Turan 2016). 

There was congruent between genetic and morphological analyses that S. rhombus was 

genetically and morphologically differentiated from S. maximus and S. maeoticus. Phylogenetic 

studies of molecular genetic variation are increasingly being used to test evolutionary hypotheses 

about morphological, behavioral, and life-history evolution. In particular, the reconstruction of the 

evolutionary history of ecological interactions is most robust when phylogenies are based on 

characters independent of phenotypic characters involved in, or affected by, the history of these 

interaction (Brooks & McLennan, 2012; Hansen, 2014). Although suitable morphological 

characters may be found that resolve relationships and provide an independent template for testing 

evolutionary hypotheses about other phenotypic characters, mitochondrial genes provide a wealth 

of variation almost certainly independent of changes in ecologically relevant characters. This 

variation may be particularly useful in generating phylogenies in groups of taxa in which most 

variation in morphological characters is associated with apparent adaptation (such as in groups that 

have undergone recent adaptive radiation), or where excessive homoplasy in such morphological 

characters is apparent (Brown, 1994). 

In conclusion, as a result of phylogenetic analysis for turbot species, the presence of three 

different turbot species is determined as S. maximus, S. maeoticus and S. rhombus in the Black Sea 

and the Marmara Sea. S. rhombus is genetically found as the most different species. In this study, 

it has been proven that S. maeoticus, which has not been reported from the Marmara Sea and Black 

Sea coasts of Turkey so far, is a distinct species from S. maximus. Consequently, the 

Scophthalmidae family has been began to be represented by six species with the inclusion of S. 

maeoticus in fish fauna of Turkey through this comprehensive study. The present study also suggest 

that COIII could be adopted as rational approach for resolving unambiguous identification of 

scophthalmid species in Turkish marine waters with applications in its management and 
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conservation. Moreover, further analyses on a larger data set and additional molecular markers, 

such as nuclear genes, could improve the findings and address for more explanation. 
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