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Statistical inference of stress-strength reliability
for the exponential power (EP) distribution based
on progressive type-II censored samples
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Abstract

Suppose that X represents the stress which is applied to a component
and Y is strength of this component. Let X and Y have Exponen-
tial Power (EP) distribution with (a1, 1) and (a2, 82) parameters, re-
spectively. In this case, stress-strength reliability (SSR) is shown by
P = P(X <Y). In this study, the SSR for EP distribution are ob-
tained with numerical methods. Also maximum likelihood estimate
(MLE) and approximate bayes estimates by using Lindley approxima-
tion method under squared-error loss function for SSR under progres-
sive type-1I censoring are obtained. Moreover, performances of these
estimators are compared in terms of MSEs by using Monte Carlo sim-
ulation. Furthermore coverage probabilities of parametric bootstrap
estimates are computed. Finally, real data analysis is presented.
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1. Introduction

In this article, it is considered estimation of P = P (X < Y'), when X and Y are inde-
pendent exponential power random variables with different parameters. Stress-Strength
model identifies the life of a component which is exposed to X stress with Y strength.
The probability of P = P (X <Y) is called as stress-strength reliability (SSR). Stress-
Strength models can be used in variety of areas such as engineering, medicine, military.
The reliability of a carbon fiber, a bridge, an elevator and so forth can be given as exam-
ples to SSR. When the failure time of all components in system may not always observe
in reliability analysis and life test. In this case, censored data is obtained.

There are different types of censoring schemes such as type-I, type-II and progressive
type-II right (PTR-II) censoring schemes in lifetesting experiments. In type-I censoring
scheme, the experiment is stopped at a pre-fixed time. In type-II censoring scheme, the
experiment is stopped whenever a fixed number of failures has been observed. One of
the most widely used censoring schemes is progressive type-II right (PTR-II) censoring
scheme. This scheme is described as follows. Assume that n identical units are placed
on a test and m failures are going to be observed. At the time of the first failure, Ry
items are chosen at random and removed. Similarly, at the time of the second failure,
R of the remaining items are chosen at random and removed, and so on. Finally, at the
time of the m™ failure, all the surviving items are censored. PTR-II censoring scheme is
shown with R = ( R1, R2,..., Rm). In PTR-II censoring, Type-II censoring is obtained

for R =(0,0,...,n —m) . In this life time process, X® = ( Xﬁ}nm,Xffnm, ...,X,I,%lj';'nm)
with X1« xB ... < XBm s called as PTR-II censored sample with R =

L:m:n 2:m:n

(R1, R2, ..., Rm) scheme. The joint pdf of this censored sample is given by;

(1.1) fxr

1im:n’ " 2imn? T mimen

m

xR XR (I17I27 71'm) = ch (wl) [1 - F(xl)}Rl ’
i=1

—00 < 1 <T2< < Ty < OO

wherec=n(n—R1 —1)x---Xx(n—Ri— Ry — -+ — Rm—1—m+1). (Balakrish-
nan (2007) , Balakrishnan and Aggarwala (2000)).

Estimation problem of SSR under PTR-II censoring which reduces the cost and time
of an experiment is fairly important. There are many studies about estimation of SSR for
some distributions under PTR-II censoring. Among them are Saragoglu et al. (2012),
Lio and Tsai (2012),Valiollahi et al. (2013), Lin and Ke (2013), Rezaei et al. (2015),
Basirat et al. (2015).

The exponential power (EP) distribution introduced by Smith &Bain (1975) has been
studied by many authors such as Leemis (1986), Rajarshi&Rajarshi (1988) and Chen
(1999). In this study, it is assumed that X and Y are independent Exponential Power
(EP) random variables with (a1, 81) and (a2, B2) parameters, where 31, 82 > 0 are shape
parameters and o, a2 > 0 are scale parameters, respectively. In this case, the probability
density functions (pdfs) and cumulative distribution functions (cdfs) of X and Y are as
follows;

B1—1 B1 B1
(1.2) f(z500,61) = % (0%) exp (0%) exp [1 — exp (0%) :| , x>0

(1.3)  F(x;a1,61) =1—exp (1 T ( x)51>

al
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B2—1 B2 B2
(14) f(y;a2,B2) = Ba (i) exp (O%) exp [1 —exp <£> ] ,y>0

a2 \ 2 a2

(1.5)  F(y;a2,02) =1—exp <1 TP ( i)m)

The main objective of this manuscript is to obtained the approximate Bayes estimators
for SSR of EP distribution based on PTR-II censored samples under squared error loss
function and compare them with maximum likelihood estimators (MLEs) of SSR. The
rest of the manuscript is organized as follows. In Section 2, SSR for EP distribution is
given. In section 3, the MLEs and bootstrap confidence intervals for SSR are derived. In
section 4, the approximate Bayes estimators under squared error loss function are derived
by using Lindley’s approximations. Using Monte Carlo simulation, The approximate
Bayes estimation are compared with the maximum likelihood estimation in terms of
Mean square error (MSE) and results are tabulated in section 5. In section 6, real data
analysis is presented. Finally, conclusions are given in Section 7.

2. Stress-Strength Reliability

Let X and Y independent random variables have EP ditribution with ( a1, (1) and
(a2, B2) parameters, respectively. Suppose that Y represent the strength of a component
exposed to X stress, then the SSR of this component is obtained as follows,

oo

(21) P=P(X<Y)= / Jv (9)Fx () dy

(2.2) = 7 ﬁ—z (52>/32—1 exp (32)52 exp {1 — exp (a%) 52]

X exp |:1 — exp

This probability can be solved by using numerical methods.

3. Maximum Likelihood Estimation (MLE)

Ron,

Let X® = (XR1 Xk ~~-»Xm1:m1=n1) denote PTR-II censored sample with

l:ming? 2:miying?
R censoring scheme taken from EP (a1, 1) distribution having pdf and cdf defined
in Bq.(1.2) and Eq.(1.3) and YS = (Ysl v,52 ,Y,i;'?,%wnz) denote PTR-II

1:mog:ing? L 2:moing s ***

censored sample with S censoring scheme taken from EP (a2, 32) distribution having



242

pdf and cdf defined in Eq.(1.4) and Eq.(1.5). Then, the likelihood function is obtained
as follows,

L(aa, B, az, B2 xR’ yS) = |:Cl Hf (Tiimying ) [1 = F (miimltnl)}Rt]

=1

X |:02 H I (Yjimaims) [1 - F (yj:m217l2)}5j:|

()" (2)°
C1C2 — —
a1 (6%)

mi B1—1 m2 B2—1
« l l Ti:my:ny I l Yj:maging

- (6%} Qa2

=1

(3.1)  L(ax,pr,az, 2|2, y%)

j=1
X ex i xlmlnl ex Z 14+ R)[|1—ex Limyng "
’ i=1 b ' ’ a1

b y]'m n Yj:mo:n P2
X exp 2 2 2 exp Z 1+ 5;5) l—exp(%)

=

where

C1 = nl(nl—l—Rl)x~--><(nl—m1+1—R1—~~~—le_1),
co = ng(n2—1—51)><---><(ng—m2+1—51—-~~—5m2_1).

Then, the log-likelihood function is given by,

(3.2) ¢ (a17617az7ﬁ2\x127ys) =miIlnBi—milnar+maInBo—malnas+In ¢ +1In co
61 _ 1 Zl Ti: Litmying + (,82 _ 1)§1n Yjmoing
=1 @

B
1 —exp (ﬁimlml ) 1}
aq
m2

= (Ui & Yi &
+ moing ) + 1 + S 1 — ex ( 1moing )
> (e S ey |t (L

By differentiating partially the log-likelihood function €( a1, B1, az, B2 mR,yS) with
respect to a1, B1, a2 and P2 parameters and then equalizing them to zero we get,

mi

+§f (Lm“”l )Bl +5 (1 +R)
i=1 a1 i=1 '

B B
& (ll}i:ml:nl) ! exp <$i:m1:n1) 1:| _ (51 - ].) mi -0
[e5] [e51] a1 a1

+ Zl (1+R:)
i=1
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— Tizmy:n
+i2211n <7a1 1)
— Z 1+ Ry)

(xi:ml:nl >B1 In (xi:mlznl ) exp (xi:mlznl )ﬂl -0
= a1 [e51 aq
(3.5) % :_@_’_i _& Yjimaing &

’ Oas a2 o2 Qs

j=1
+Z (1+55) 5 Yjzmaing o e Yjzmaing o _ (B2 —1)ma -0
iz Q2 Q2 P Q2 Q2 N

B2 m2
Yjimaing Yjimaing Yjimaing
+ In| Z&/——= | + E In | &Z&2=——=
352 /5'2 f ( ) < o > — < 02 )

Jj= j=1

B2 ) ) B2
_Z 1+5;) ( jma: "2) ln(yjzmzzm)exp (yjsztnz) :| -0
(e %} a2

It is clear that the normal equations do not have explicit forms. MLEs of a1, a2, 81 and
B2 parameters are obtained by using Newton Raphson method. By using Eq.(2.3) and
invariant property of MLE, MLE for P is obtained as follows.

) Ba—1 B2

() (1)

2 \ (2 Q2
y B2 y B1

X exp 1—exp<A—> exp 1—exp(A ) dy
Qa2 agq

Moreover, Bootstrap method is used to obtain confidence intervals of P.

aﬂ mi — <xi:m1:n1 )ﬁl (zi:m1:n1>
3.4 — = = I
(34) 061 B * ; [ a1 " a1

mi1

m2

(37) Purp=1- /

y=0

3.1. Bootstrap Confidence Intervals. The bootstrap method that is widely used in
practise is the percentile bootstrap (Boot-p) proposed by Efron (1982). It is illustrated
shortly in following steps how to estimate parametric bootstrap confidence intervals of
P using Boot-p method.

Step 1. Generate PTR-II censored samples (w?ml nl,mg‘fm g mfjfl"ml n1) and

(yilmym,yffm%m, ...,y,f[;?mzjm) taken from EP distributions with (aq, 81) and (a2, 32)

parameters, respectively.

Step 2. Estimate P , say ﬁMLE.

Step 3. Generate a bootstrap samples (L1.m1:n1> T3:myings s Tmgrmyny ) a0d
(YT maing > Yoimaing s - Ymagimaing ) » USING ﬁMLE, Ri,Ra,...,Rm,, S1,52,...,Sm,.Obtain
the bootstrap estimate of P , say ﬁ}k\/[LE .

Step 4. Repeat Step 3 NBOOT times.

Step 5. Let F*(x) = P(ﬁ}‘uLE < z), be the cumulative distribution function of Pirp.
Define JBMLEBoot_p(:E) = F*~!(z) for a given z. The approximate 100(1-v)% confidence
interval for P is given by

(3.8) (ﬁ]bILEBootfp (v/2), ﬁA{LEBootfp(l - ’7/2))
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4. Bayes Estimation

R, s

Let (X1 s Xauy s oo Xoihnons ) and (V5 Yol ys oo Yindihaaing ) are
PTR-II censored samples taken from EP (a1,1) and EP (as2,f2), respectively. For
Bayesian estimation of SSR under PTR-II censored sample, we assume that the a1,
B1 , az and B2 parameters have independent prior Gamma (a1,b1), Gamma ( az,b2),
Gamma (a3, b3) and Gamma ( as,bs) distributions, respectively. These prior density
functions are given as follows.

(4.1)  mi(a) = of’ 1eX1I3 Ea:)blal)btlll a1, bi,o1 > 0
(42)  m(fi) = ‘112716)(19((@;)6251)6;2 as,b2,B1 > 0
(4.3) 73 (ae) = 0z’ exlg) Eag)l)?’aQ)ng as, bz, o > 0
(44) wa(B2) = - QXIIj ((a;)ZM/BQ)bZ4 a4,b4,82 > 0

Then, the joint prior density function of a1, 81 , @2 and B2 can be written as follows;

a1—1j3ay pag—1lyas asz—1ljyasz pag—lyaq
R N o R s N N o

)l B B2) = T T @) T ) ()

x exp (—bia) exp (—b2f1) exp (—bsaz) exp (—baB2)
ai, by, 1,00, 01,62 > 0,i=1,2,3,4
From (4.5), the log of joint prior density function is given by

(4.6) G(al,ﬁl,az,ﬁz) = 11171’(0(1,,31,0(2,52) o< (a1 — 1) Inor + (CLQ — 1) 1n61

+(as —1)Inaz + (as — 1) In B2 — biar — b2f1 — bzaa — baf2
With the help of equation (3.1) and (4.5), the joint posterior density function of aq,
B1 , a2 and B2 when data are given can be written as follows;

(4.7)  P(au, Bi,az, B2 XF, V) =
7 (a1, B1, a2, B2) k1 (Timymy; 1, B1) k2 ( Yjimamg: a2, B2)
f f f fﬂ-(al’ﬁl’a2752)kl (ﬁcizml:nﬁal,ﬁl)kz(yj;m2;n2;0£2,62)d06ﬂ
0 000

where

daﬁ = da1 dﬁl dagdﬂz

/81 m < Ti:my:n p1
kl (:L’i:mlznl;a17ﬁl) = (a> exp ; (#) %
mi T B1 mi 2 B1—1
X ex 1+R)|[1—ex M) <M)
p ;( ) p ( o T3

and

and
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Ba ma ma Yjima: B2
k2(yj:m2:n2;a2,52)=(072> exp Z(%) x

j=1
m2 Yjimgin B2 m2 Yjimain B2—1
X exp Z(l -‘rS]) 1 _exp( JAa; 2) H ( JAG{ZA 2)
Jj=1 j=1

Let any function of a1, 1 , a2 and B2 is u (a1, 81, @2, B2). The bayes estimation of
this function under squared error loss function can be written as follows,

(4.8) '&B (al,ﬂl,ag,ﬂg) = E (u (al,ﬁl,ag,ﬁg) ‘XR,YS)

O%g

T TTu(al,,Bl,az,,Bz)exp [€( a1, B1, a2, Bz, y°) + G (a1, B1, a2, B2)]da
0O 0 0

TT T T explt(an, b, an Balo™,y) + G ( ar, B, az, Ba)]das
00 00

In Eq.(4.8), if u (a1, B1, a2, B2) is taken as P, Bayes estimator of SSR can be obtained.
But, it is not possible to compute Eq.(4.8) in closed-form. Because of this reason, we
have obtained the Bayes Estimators of SSR by using Lindley’s approximation under the
squared error loss function.

4.1. Lindley’s Approximation. Lindley’s approximation suggested by Lindley (1980)
is an approximate method used to compute the ratio of two integrals as in Eq. (4.8) that
can not be solved analytically. The Lindley’s approximation formulas for case with four-
parameters by using (61, 62,03, 04) notation instead of (a1, 1, @2, 82) can be written as
follows.

(4.9) (9) poyer = E[0(6) /X]

4 4 4

4 4
A A A 1 1
~ {U (91,92,93,94) + By E g (wij + 2uigj) oij + By E

i=1 j=1 i=1 j=1 k=

4
E Lijk0iiOr1U
1 I=1

where él, éz, 3 and 6, are the MLEs of 01, 02, 03 and 04, respectively and other
formulas are as follows.

Bu (91,02,93,64)

W= Sl =123,
2
wy = TeOuInb00) 05
i0Uj

0%0(01,05,05,00) . .

Ez] - W y 1,) = 1727374
_ 636(01,92793704) .. o

E’ij = W,Z,],k—l,273,4

(i)™ = low] 13,5 = 1,2,3,4
and o;; is the (¢, j)-th element of the matrix [o;;]. From (4.6), we have
_0G(,fr,02,82) a1 —1 0G (a1, Br,02,B2) _az—1

= b17 g2 =

g1 80(1 (e5] 861 o ﬂl b2
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0G (aa, 1, oz, B2) a3 —1 oG (au, B, az, B2) ag—1

= = b = = b
g3 8042 a2 8 g4 8ﬂ2 62 *
and then, we have the following values of ¢;; for i, j=1,2,3,4 and ¢, for ¢, j,k = 1,2, 3, 4.
o m (,31 — 1) mi — .
i = OT% + T + ; 1+81) a0 (ﬂﬁi;mlznl,a1,51)+

m1 . b1
+ 3 (U4 Ri) b ( iy ony s 1, 1) <—51 —1-5 (Mi) )

«
1=1 1

my
lip = Zgl (@iimying; a1, 1) (7 In <w”;7inl) oo %)Jr

i=1

+§:h1 (®izmy s 00, B1) a (1 + Ri) { In (T’;”ill”) (1+ ( ”’Zii“l)[}l)_y ([711) }_aﬂ;

i=1

b3 =1031=0, lig=1"041 =0, {21 =101

mi e [ T A1 T 2
622 _ = + ( ’L:m1:n1> ln ( ’L:m1:n1> _
5% Z aq [e3]

=1

my 2 ‘ 2
_ Z h1 (xi:ml:nl jan, 51) (1 + Rz) % In (xz:'nu:nl )

im1 /31 aq

1 + ( Ti:my:ng >61:|
5]

loz =032 =0, log =442=0

-1 2
=12 4 P22 D12 4 SP (1 4 82) g2 (pgmaina 2, )+
2 2 =1

2 ) B2
+ Z (1 + SJ) ha ( Yjmoing; (2, 52) <_ﬂ2 —1- ﬂg (yj:”;bz?f&) )
j=1

ma
jimo:n (67
laa = Zgl (yj?mzinz;a%ﬁ?) <_ In <y]a¢) Q2 — Fz)""

i=1 2

+ ihz (Yjimaing; 02, B2) a2 (1 + S5) |: In (7%;722%2) <1 + ( 72”:22:”2 )52) + (LTIZ) :| —%

Jj=1

laz = {34

mao n2 y B2 y 2
_ 2 Jimaing Jimaoing
644 T B2 - ( o ) . ( a ) -
2 =1 2 2

mo 062 e ) 2
S om0 1+ 5 B (e

(€3]

B
1 + ( yj:'m21n2> 2:|
Q2

Jj=1
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6111 - -
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ay

_Zgl (Ii;m1:n1§al,ﬁl) [Bf+351+2] + Q(Bl ;31)m1+

+§1: hi (%i:myny 3 01, B1) (1+ Ry) & (1 +3 (xl mi - )ﬂl + (Wzi:m )251>

a
i=1 1
mi
mi
li12 = — + E
o

1 i=1

=1

mi

- Zhl (Titmymy s a1, B

=1

my
- th (:Ei:ml:n1§ala /81) (1 + Rz) B11n (M)

_Zhl Lizmy: nl,al,ﬁl) (1+R1)

EIIQ
Z223
Z233
el 14

€244

L121 = La11,

laza = L3220 = 0,
U332 = {323 = 0,
l1a1 = L4311 = 0,

Lyao = Ly24 = 0,

2
biz2 = Z g (e n“ahﬂl) [_51 In (m) —2In <M)

JFZ hl Izml nl,a1,ﬁ1)oz1 (1+Ri)

LTiimy:n f
62222 3 +Z< L 1) ln(

3
fo“%m”“mﬁ”ma+RmnGﬁ@g)

)(1+ R)) (2 +In (mail ) +2 (mail )lh)

+351(1+—(zﬂﬁim1)51)-+2

g1 (xi:ml:n1§()él,,81) |:1I1 (M) (1 + /61) + (2 + i>:| _
aq

e

Liimy:n 2
1+3(“%*)

4+ ((Fimimg .
(23]

aq

Tiimyin Tiomyomy ) P
() (e )

L122 = L2021 = {212

Laog = l2a2 = L422 =0
L133 = f313 = {331 = 0
l1aa = lag1 = L4104 =0

l113 = {131 = 0311 =0

+

€51 (o5}

Tiimy:n 2
L ()

B11n (M)Q
1 x’L:’HLl Mg 261
+ ()

Tiimy: Tiom B
+21n (M) ( 14 (M) 1>
@l %}

3
o

Tiimy:n B
L ()

Ti:mq:n 281
+ ()

aq
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Lz = Liz2 = la13 = f231 = L312 = f321 =0
lioa = Liaz = lo1a = bog1 = Ly12 = L1421 =0
liza = Liaz = €314 = l3a1 = La13 = €131 = 0
loza = Loaz = €324 = l3a2 = Ly23 = 432 =0

m m2 jimao:in 1
6334 = 01722 + Z g2 (yj:mzinz;a27ﬁ2) |:ln (%) (1 * 62) - (2 " E>:| -

2 =

Yjimoing | P2
1+3(7J 2 2)

22
+ (L2 )
— 2+ln(m)+2(M)ﬁ2
_th (Yjimaing; 2, B2) (1 +55) ) , .a2 B
j=1 -|—ln( J"Zi'"2> ( J-r;z-w)

Z h2 y] m2 "2aa2752) (1 +SJ)

mo
— > ho (Yjmamai a2, B2) (1+ ;) | B2 In (m)

o
=1 2

l334 = l433 = l343, {314 = 443 = l434

2 A g2 (Yjmaema 02, 2(B2— 1
l333 = — 7227292(%' ainai 02, B2) [55+352+2]+M+
Qg =1 (65} Qg

Yiimo:n B2 Yiimo:n 2832
+§2: ha (Yj:maima; 02, B2) (1+5)) 5 (1 +3 (1722) + (Jaizz) )

J ) B
=1 @ +362 (1 + (71"":’22:"2) 2) +2
2m2 < - Yjima:in f2 Yjmo:n 3
lyaq = gIimaing In [ ZZmein2 ) _
444 53 + Z < an n s

i=1

B2
Yjimo:in
+3(7] 2 2)

" (y]mm2 )252

o
s, Ba) ) 2 .
lass = Z 92 Yjima: ’ﬂ27 2, P2 |:_52 In (yjim25n2> —9ln (y]:m2:n2>
(0% a2

2

. % ho (yj:m21n2§0527/82)a§ (1 + S) In (yj:'mgzng >3
J
j=1

B2 Qs

—+

1+ (yj:nLQ:nQ)Qﬁz

. 2
n otn (Zzea) E
h2 (ym n ;OZQ,ﬂQ)OZQ ( 2 Yjimo:n B2
($ Eeltmmgenlen g (2
j=1

Yjimogin Yjimoing \ P2
() (14 (5)°)
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where g1 (L‘;ml;nl;al,ﬂl), h1 (L‘;ml:nl;al, ,81), g2 (yj:mz:ng; a2,ﬁ2) and ho (yj:mg:ng;a27ﬁ2)
are given by

Ti:mqing 615
— 1
g1 (fcz‘:mlz’rn ya, 51) = Tz
g
) B2
Yjimaing
(Lomeme )™ g,
g2 (yj:mztnz ; 2, /62) = T
2
) B1
( o ) B exp( o )
h1 (l‘z‘:'ml:'rn ;O 51) = a?
1

and

) B2 . B2
Yjimogin Yjima:in,
) ( 7(12 2 ) ﬁz exp (7(12 2 )

ha (yj¢m22"2;a27/82 = 2
@5

Finally, the approximate Bayes estimator under the squared error loss function of SSR
for EP distribution based on PTR-II censored samples are obtained as follows,

4 4 4
(4.10) Pss = Pyrs+ = ZZ (wij + 2uigj) os5 + % ZZZ Zfijkm‘j(fkluz

=1 j=1 i=1 j=1k=1 [=1

where ﬁMLE is defined in Eq.(3.7).

5. Simulation Study

In this section, a Monte Carlo simulation study is given to observe the performances
of two estimation methods for different sample sizes and different censoring schemes
for SSR based on EP distribution under PTR-II censoring. For different sample sizes
and censoring schemes, by using the algorithm presented in Balakrishnan and Sandhu
(1995), PTR-II censored samples are generated from EP distribution. This algorithm is
as follows;

(1) Wi, Wa,..., Wy, are mi-sized samples generated from Uniform (0,1) distribu-

tion.
mq -1
i+ R_,»)

(2) i=w, Immmi is defined for i = 1,2,...,m;.

(3) Ufiiny =1 = Viny Viny—1 ... Viny —i41 is obtained for i = 1,2,...,m;.
Thus Uf?ml:nl < Ufml:nl <-ee < Uﬁ:ml:nl are obtained PTR-II censored samples with
censoring scheme R = (R1, Ra,...,Rm,) taken from Uniform (0,1) distribution. Fi-
nally, PTR-II censored i*"order statistics with censoring scheme R = (R1,R2,...,Rm,)
taken from EP (a1, 1) is obtained by transformation
Xfml:m = In (—ln (Uij‘?ml:n1 + 1) + 1)ﬁ ar, ¢ = 1,2,...,m; and PTR-II censored
jthorder statistics with censoring scheme S = (51, 52,...,Sm,) taken from EP (az,32)
distribution is obtained by transformation

Yj?m25”2 =In (f In (Uim2:n2 + 1) + 1)% as, j=1,2,...,ma . Then, the MSEs of

the MLE of SSR are compared with MSEs of the approximate Bayes estimates obtained
by Lindley approximation under the squared error loss function based on PTR-II censor-
ing. For comparison purposes, the approximate Bayes estimates under informative priors
a1 = 1;b1 = ;a2 = 1;b2 = 1;a3 = 1;b3 = 1;a4 = 1;b4 = 1 are computed. We have
reported MSE of the ML estimates and approximate bayes estimates of SSR over 5000
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replications. The results are given in Table 1. Moreover, we have reported length and
coverage probabilities based on bootstrap confidence intervals of SSR over 1000 bootstrap
sample with 2000 replications. This results are given by Table 2.

Table 1. The MSEs of MLEs and Approximate Bayes Estimates
foras =1,61 =2,aa =1land B2 =1

(n1,m1) (n2,ms) Censoring scheme Ryure Rpaves
R S MSE  MSE
5.5 5.5 (5 %0) (G#0) 00273 0.0217
10,5 10,5  (4%0,5)  (4%0,5) 0.0200 0.0153
10,5 105 (5,4%0)  (5,4%0) 0.0229  0.0199
10,5 10,5 (5%1) (5%1)  0.0201  0.0169

10,10 10,10 (10 % 0) (10x0)  0.0156  0.0171
20,10 20,10  (9%0,10) (9%0,10) 0.0119 0.0118
20,10 20,10  (10,9%0) (10,9%0) 0.0134  0.0145
20,10 20,10 (10 % 1) (10x1)  0.0116 0.0116
20,20 20,20 (20 % 0) (20%0)  0.0088  0.0098
30,10 30,10  (9%0,20) (9%0,20) 0.0147 0.0103
30,10 30,10  (20,9%0) (20,9%0) 0.0132  0.0145
30,10 30,10 (10 % 2) (10%2)  0.0127  0.0103
30,30 30,30 (30 % 0) (30%0)  0.0055  0.0059
100,50 100,50  (49%0,50) (49 0,50) 0.0032  0.0027
100,50 100,50  (50,49%0) (50,49 %0) 0.0030  0.0031
100,50 100,50 (50 1) (50%1)  0.0027  0.0023
100,100 100,100  (100%0)  (100%0) 0.0017  0.0017

Table 2. Average length and coverage probabilities of bootstrap confidence
intervals for P for a1 = 1,81 =2,a2 =1 and B2 =1

(ni,m1) (n2,ms) Censoring scheme Average  Coverage
R S length  Probability
20,20 20,20 (20 % 0) (20 % 0) 0.4134 0.9855
(1) 100,50 100,50 (49 % 0,50) (49%0,50) 0.2292 0.9540
100,50 100,50 (50,49 «0) (50,49x0) 0.2219 0.9440
100,50 100,50 (50 % 1) (50 % 1) 0.2069 0.9345
100,100 100,100 (100 = 0) (100 = 0) 0.1587 0.9510

6. Data Analysis

To compute estimation methods of P , it is considered two datasets, originally reported
by Bader and Priest (1982), on failure stresses (in GPa) of single carbonfibers of lengths
20 mm and 50 mm, respectively (Ghitany et.al. (2014)). The datasets are given in Table
3 and in Table 4.

Table 3. Length 20 mm: (n1 = 69)
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1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944
1.958 1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098
2.140 2.179 2.224 2.240 2.253 2.270 2.272 2.274 2.301
2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490
2.511 2514 2.535 2.554 2.566 2.570 2.586 2.629 2.633
2.642 2.648 2.684 2.697 2.726 2.770 2.773 2.800 2.809
2.818 2.821 2.848 2.880 2.954 3.012 3.067 3.084 3.090
3.096 3.128 3.233 3.433 3.585 3.585
Table 4. Length 50 mm: (ns = 65)

1.339 1.434 1.549 1.574 1.589 1.613 1.746 1.753 1.764
1.807 1.812 1.840 1.852 1.852 1.862 1.864 1.931 1.952
1.974 2.019 2.051 2.055 2.058 2.088 2.125 2.162 2.171
2.172 2.180 2.194 2.211 2.270 2.272 2.280 2.299 2.308
2.335 2.349 2.356 2.386 2.390 2.410 2.430 2.431 2.458
2.471 2497 2.514 2.558 2.577 2.593 2.601 2.604 2.620
2.633 2.670 2.682 2.699 2.705 2.735 2.785 3.020 3.042
3.116 3.174

First, it is checked whether EP distribution can be used or not to analyze these data
sets. The Kolmogorov-Smirnov (KS) distances have been used to check the goodness-of-
fit. ML estimates, KS-Z and p- values based on above data are shown in Table 5.

Table 5. Kolmogorov-Smirnov Z and the corresponding p-values for MLE

Carbon Fiber MLE Kolmogorov p-
-Smirnov Z values

X (Length 20 mm) & =2.9920 g =3.7061 0.8519 0.4624

Y (Length 30 mm) & = 2.6964 B =4.0975 0.6509 0.7906

Progressive censored samples based on X and Y for m; = ma = 50, n1 = 69, ne = 65
are as follows:

Progressive censored samples for X (Length 20 mm)
1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944
1.958 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140
2.179  2.224 2240 2.270 2.272 2.382 2.426 2.434 2.435
2.490 2.511 2.535 2,566 2.629 2.633 2.642 2.648 2.684
2.697 2.726 2.770 2.773 2.818 2.821 2.848 3.012 3.084
3.090 3.128 3.233 3.433 3.585

Progressive censored samples for Y (Length 50 mm)
1.339 1.549 1.574 1.589 1.613 1.746 1.753 1.764 1.807
1.812 1.840 1.852 1.852 1.862 1.864 1.952 1.974 2.051
2.058 2.088 2.125 2.171 2.172 2.211 2.270 2.272 2.299
2.308 2.356 2.390 2.410 2.430 2.431 2.458 2.497 2.558
2.577 2.593 2.601 2.620 2.633 2.670 2.682 2.705 2.735
2.785 3.020 3.042 3.116 3.174

In this case, ML and approximate Bayes estimates for SSR under progressive type 11
right Censoring are as follows.
Censoring scheme

(n1,m1) (n2,ma) R S Pyie  Ppaves
6950 6550 (19,49%0) (15,49#0) 04158 0.4187
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Moreover, bootstrap confidence intervals for SSR are (0.2765,0.4649) and bootstrap
estimate of SSR is 0.3706.

7. Corollary

In this study, we have considered the estimation problem of SSR for the EP dis-
tribution under PTR-II censored sample.lt is observed that the maximum likelihood
estimators of SSR can be obtained by using some numerical methods. We have obtained
the approximate Bayes estimators of SSR by using the idea of Lindley’s approximation
under the squared-error loss function. We have compared the MSEs of the approximate
Bayes estimators and the MLEs through Monte Carlo simulations, and it has been ob-
served that the performances of the approximate bayes estimates are more satisfactory
than ML estimators. When m;/n; and mg/ng rate increased, MSEs of the MLE and
approximate Bayes estimates tended to decrease. The best estimates have been obtained
when n1 = my and ne = m2 (complete sample case).
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