

Journal of Applied Biological Sciences Uygulamalı Biyoloji Bilimleri Dergisi E-ISSN: 2146-0108, 11 (3): 33-38, 2017, www.nobel.gen.tr

Investigation of Antimicrobial Effect by Improving Various Compounds in Padina pavonica (Aydın, Turkey)

H. Halil Bıyık¹, Ümit Babacan², Esin Poyrazoğlu Çoban¹, Bahadır Törün¹, Zeynep Erçin¹, Neriman Aydın²

¹Department of Biology, Faculty of Science and Art, Adnan Menderes University, Aydın, Turkey ² Department of Medical Microbiology, Adnan Menderes University, Aydın, Turkey

*Corresponding Author	Received Tarihi: October 04, 2017
E-mail: hbiyik@adu.edu.tr	Accepted Tarihi: December 15, 2017

Abstract

Padina pavonica is a member of the brown algae family and is a food source for many organisms in terms of the vitamins, minerals, amino acids and lipids it contains. For other living things, habitat maintenance also gives importance to biodiversity. *Padina pavonica*, which is mainly used in food, cosmetic, feed industry and drug industry, has been reported to have antibacterial and antifungal effect in antimicrobial activity studies. Silver nitrate is the most important silver salt known; colorless, crystalline structure. It can be used as antihemorrhagicand is known to have antibacterial properties. Vinegar is a sour juice that is used as a sweetener in meals, as a sweetener in salads or as a preservative such as brine. Antioxidant properties as well as antimicrobial effects are known for humans. In this study, the antimicrobial different effects of extracts from *Padina pavonica* against various microorganisms were examined by adding vinegar, cider and silver nitrate.

Keywords: Brown algae, Padina pavonica, vinegar, cider, silver nitrate

INTRODUCTION

Padina pavonica belongs to the family of brown algae and has a dark color due to the chlorophyll dominance of the phycocyanin in its contents. It is therefore called brown algae [1]. It is rich in vitamins, various minerals, amino acids and proteins; polysaccharides, sterizers, and lipids. Its use is preferred in many areas (food, cosmetics and pharmaceutical industry). In addition, antibacterial activities of brominated compounds and etheric oils were determined; some brown algae in the same family have different protein fractions, antitumoral, anticoagulant and antiulcerative activities [2, 3, 4, 5]. In recent years, irregular and widespread uses of drugs and antibiotics that suppress the immune system have resulted in an increase in fungal infections [6]. The use of antibiotics and antifungals are causing microorganism resistance. In this study, we investigated the antimicrobial effect of Padina pavonica collected from Aydın-Akbük coastline by adding 5 different extracts, cider, vinegar, silver nitrate, Amphotericin B and Fluconazole.

MATERIALS and METHODS

Plant material

Padina pavonica was collected from the Saplı Island inAydın-Akbük(37 ° 24'34.4 "N 27 ° 24'32.7" S) on April 2016.

Preparation of extracts

The samples brought to the laboratory were washed with tap water and then with 5% low hypochlorite solution. The necrotic parts and the epiphytes were removed and washed with distilled water. *Padina pavonica* weighed 630 grams with the wet weight. They were lyophilized after waiting for 3 days at -80°C. Five different solvents (ethanol, methanol, hexane, acetone and di-ethyl ether) were used to extract in different fractions from *Padina pavonica*. For this, 50 grams of *Padina pavonica* weighed and placed in 10 presterilized bottles separately and solubilized. At the end of the 26th day, the color in the bottles became darkest and the process of extracting with the evaporator was completed [7]. The obtained extracts were stored at a temperature of $+4^{\circ}$ C in the dark light. Five different extracts from *P. pavonica* were all diluted with sterile distilled water to give 500 mg at 150 mL.

Cider and vinegar were bought from the market. Silver nitrate was weighed on a precision scale and transferred into sterile conical. Sterile distilled water was added to obtain a ratio of 1%. The antifungals in the vial form (Lumen 100mL (2mg/mL) Fluconazole vial and Amphotericin B (Fungizone 100mL/50mg) are commercially available.

Microorganisms and condition for cultivation

The microorganisms used in the study were obtained from Adnan Menderes University Faculty of Science and Literature Microbiology laboratory culture collection. *Escherichiacoli* ATCC 35218, *Pseudomonas aeruginosa* ATCC 35032, *Proteus vulgaris* ATCC 33420, *Staphylococcus aureus* ATCC 25923, *Staphylococcus epidermidis* ATCC 12228, *Salmonella typhimurium* ATCC 14028, *Enterococcus*ATCC29212, *Listeria monocytogenes* ATCC 19112, *Enterobacter aerogenes* ATCC 13048, *Klebsiella pneumoniae* ATCC 13882, *Serratia marcescens* ATCC 13880, *Mycobacterium smegmatis* ATCC 607, *Bacillus subtilis* ATCC 6633, and*Micrococcus luteus* ATCC 9341,were incubated for 24 h at30-37°C on Nutrient Agar. *Candida albicans* ATCC 10231, *Candida utilis* ATCC 9950 and*Saccharomyces cerevisiae* ATCC 9763 incubatedfor 24 h, at30°C on Saboraud Dextrose Agar.

Antimicrobial assays

Screenings for antimicrobial activities were carried out by the agar well diffusion method against test microorganisms [8, 9, 10, 11]. The inoculum size of each group of bacteria and yeast were prepared by using a no. 0.5 McFarland tube to give a concentration of 1×10^8 bacteria and 1x10⁶ yeast per milliliter. Mueller Hinton Agar (MHA) was used to test antimicrobial activity. 0.1 ml from cell culture media was inoculated to each plate. It was kept to solidify at room temperature for a while and then holes were made on top with a sterile stick. These holes were filled with 30µL of plant extracts. It is known that the well diffusion method provides stabilization of the active ingredients, especially when investigating the antimicrobial activities of herbal medicines and because they are inoculated into the medium as a liquid. Then, bacterial cultures were incubated at 30-37°C and yeast cultures were incubated at 27-30°C for 18-24 h. After incubation the diameters of the inhibition zones were evaluated in millimeters. The synergistic effect was determined by the checker-board method for mixtures with strong affinity and MIC values [12, 13, 14].

RESULTS and DISCUSSION

In this study, which was investigated to increase the antimicrobial effect of the extracts of *Padina pavonica* by means of well diffusion method by adding apple vinegar, grape vinegar, silver nitrate, Amphotericin B and Fluconazole to 5 different solvent extracts (Table 1)? The findings were given in Tables 2, 3, 4, 5 and Figures 1,2, 3.

The value is determined by the Checker-board method, which is made with the mixtures with which we determined strong activity, and it is given in Table 7, 8, 9.

Defense molecules in plants are known as secondary metabolites. Therefore, the season in which the plant is collected, the temperature of the aquatic environment, the rate of salinity, the rate of heavy metal accumulating in the soil and the aquatic environment, and the rate of pollution change the metabolites of the plant[15].Antifungal and antibacterial efficacy studies also show monthly changes. We think that it may be an antimicrobial agent that can be used in the future by carrying out more detailed studies with molecular techniques, together with finding meaningful effects in our research.

Ethyl ether and hexane, which are most effective from the solvents used, are characterized by the fact that have strong effect on *M. smegmatis* ATCC 607 and *C. albicans* ATCC 10231 by adding 1% AgNO₃ (1:1) to the extracts obtained from *Padina pavonica*. Minimal inhibitor concentration (MIC) values of these effects were determined by microdilution of the synergistic effect with the checkerboard method.

Experiments conducted by adding cider, it showed a low effect against various bacteria, but in yeast group the effect of *P. pavonica* hexane isolate on *S.cerevisiae* ATCC 9763 was observed.

The addition of vinegar (1:1) to the extracts from *Padina* pavonica showed a weak effect on Gram-positive (+) and Gram-negative (-) bacteria and a moderate effect against *M. luteus* ATCC 9341 no effect was observed against yeasts.

Amphotericin B and Fluconazole, which are known to have antifungal activity and are used as drugs, have been found to increase the existing effects of extracts obtained from *P. pavonica* on *C.albicans* ATCC 10231, *C.utilis* ATCC 9950, and *S. cerevisiae* ATCC 9763 after addition to the extracts.

Gonzalez del Val (2001) that methanol extracts of *P. pavonica* show antibacterial activity only against *Bacillus* subtilis.

Tüney et al. (2006) researched antimicrobial activity of *P. pavonica* extracts against some pathogenic microorganisms. The ethanol extracts of *P. pavonica* showed low antimicrobial effect against *Enterococcus faecalis*,

Pseudomonas aeruginosa, Escherichia coli and *Candida* sp. However, the acetone, methanol, and diethyl ether extracts of P. pavonica had no antibacterial or antifungal activities.

Ben-Ali et al. (2010) observed antimicrobial activity of *P. pavonica* in different seasons and it has higher antibacterial effect in summer. They show that *P. pavonica* extracts had large antibacterial activity against Gram (+) pathogens and less important against Gram (-), but all extracts of *P. pavonica* indicate any effect against *E. coli* O126:B16.

Christobel et al. (2011) investigated antimicrobial activity of *Padina tetrastromatica* extracts against some pathogenic bacteria. The brown alga *P. tetrastromatica*showed against the pathogens *Escherichia coli*, *Staphylococcus aureus*, *Proteus mirabilis*, *Pseudomonas aeruginosa*, and *Vibrio harveyi*.

Taherpour et al. (2016) screened antibacterial and antifungal activity of *Padina* sp. as marine alg They indicated that ethanol, ethyl acetate, chloroform extracts of *Padina* sp. did not have effect, but hexane extract of *Padina* sp. had activity against *Staphylococcus aureus*. However, all *Padina* sp. extracts did not infer any antifungal activities against fungi.

Acknowledgements

This work was carried out by Adnan Menderes University Biology Department Microbiology Laboratory.

REFERENCES

[1] Karamanoğlu K. Farmasötik Botanik 2nd Ed. 1977. Ankara Üniversitesi Eczacılık Fakültesi Yayınları, Ankara. 44.

[2] Güven K, Güvener C and Güler, E. 1987. Pharmocologicalactivities of marine algae, introduction to applied phycology, ed. By I.Akatsuha, SPB. Acad.Pub. Haguae, Netherlands. 67-92.

[3] Aysel V, Çetingül V, Güner H, Dural B. 1992. Determination of soluble carbohydrate and protein amounts of some brown algae.Fac.of Fish. 114-123.

[4] Çetingül V, Aysel V, Dural B, Güner H. 1994. An Investigation on the soluble carbohydrate and protein amounts of some red algae collected from different sites of Izmir Bay. Fac. of Fish. 11-18.

[5] Haliki A, Çetingül V, Denizci AA. 1998. An investigation on antibacterial activities of some marine algae (Phaeophyta, Rhodophyta), Ege Univ J Fac Sci, 21: 1-9.

[6] Koç AN, Gökahmetoğlu S, Oğuzkaya M. 2000. Comparison of E test with the broth microdilution method in susceptibility testing of yeast isolates against four antifungals. Mycoses. 43: 294-7.

[7] Erturk O, Kati H, Yayli N, Demirbag Z. (2003). Antimicrobial activity of *Viscum album* L. subsp. abietis (Wiesb). Turk J Biol. 27:255–258.

[8] Gür D. (1992). Antibiyotik duyarlılık testleri: Antibiyotiklere direnç mekanizmaları ve antibiyotik duyarlılık testleri. E.H.Akalın. Pfizer İlaçları A.Ş. Kitaplar Serisi, p. 45-67.

[9] Ma-Jing Wen, Tan Wei-Ci. 1984. Screening for Antimicrobial Activites in Marine Algae from Qingdao Coast, China, Hydrobiol. 116; 517-520.

[10] Collins CH, Lyne PM, Grange JM, Falkinham JO. 2004. Microbiological methods. 8th ed. London: Arnold Publishers.

[11] Clinical and Laboratory Standards Institute. CLSI. 2015. M02-A12: performance standards for antimicrobial disk susceptibility tests: approved standard. 12.ed. Wayne: CLSI, p.1-73.

[12] Martinez-Irujo JJ, Villahermosa ML, Alberdi E, Santiago E. (1996). A checkerboard method to evaluate interactions between drugs. Biochem Pharmacol. 51(5): 635-644

[13] Orhan G, Bayram A, Zer Balcı I. (2005). Synergy tests by E test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J Clin Microbiol. 43(1): 140-143.

[14] Aktaş G. (2014). Antibiyotik kombinasyonları ve sinerjistik etkileşimleri. Türk Mikrobiyol Cem Derg. 44: 47-55.

[15] Haliki A, Denizci AA, Çetingül V. (2005). An investigation on antifungal activities of some marine algae (Phaeophyta, Rhodophyta). EU J. Fish. Aquat. Sci. 22(1): 13-15.

[16] Gonzalez del Val A, Platas G, Basilio A, Cabello A, Gorrochategui J, Suay I, Vicente F, Portillo E, Río M, Reina G, Peláez F. (2001). Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain). Int Microbiol 4(1): 35-40.

[17] Tüney İ, Çadırcı BH, Ünal D, Sukatar A. (2006). Antimicrobial activities of the extracts of marine algae from the coast of Urla (İzmir, Turkey). Turk J Biol 30: 171-175.

[18] Ben- Ali AS, Ktari L, Boudabbous A, El bour M. (2010). Seasonal variation of antibacterial activity of the brown alga Padina pavonica (L) thivy collected from northern coast of Tunisia. Bull. Inst. Natn. Scien. Tech. Mer de Salammbô, 37: 1-6.

[19] Christobel GJ, Llipton AP, Aishwarya MS, Sarika AR, Udayakumar A. (2011). Antibacterial activity of aqueous extract from selected macroalgae of southwest coast of India. Seaweed Res. Utiln. 33:(1): 67-75.

[20] Taherpour A, Archangi B, Ghaemmaghami S, Zolgharnein H, Ghanemi K. (2016). Screening of marine algae (Padina sp.) from the Lengeh Port, Persian Gulf for antibacterial and antifungal activities. J Coastal Life Med.4(9): 698-702.

Tuble HEAdder a	iniounts nom <i>Faaina pa</i>	ronieu		
Solvents	Boiling Point	Drying Method	Extract amount	One dosage (30µL/
				mg)
Diethyl ether	34.6	Lyophilised	1.5 mL	1000 mg
Asetone	56	Lyophilised	10.5 mL	143 mg
Methanol	64.7	Lyophilised	1.8 mL	833 mg
Hexane	68	Lyophilised	0.7 mL	2143 mg
Ethanol	78.37	Lyophilised	4 mL	375 mg

Table 1. Extract amounts from *Padina payonica*

Table 2. Antimicrobial effects of AgNO, added P. pavonica extracts

			Inhib	ition Diam	eter (mm)		
Test Microorganisms			AgN	O3 Added	Extracts		
	1	2	3	4	5	6	7
Escherichia coliATCC 35218	10	10	9	9	9	10	9
Pseudomonas aeruginosaATCC 35032	14	15	14	13	13	15	14
Proteus vulgarisATCC 33420	10	11	10	10	11	14	12
Stapylococcus aureusATCC 25923	13	13	12	10	14	15	13
Stapylococcus.epidermidis ATCC 12228	10	12	10	9	10	10	10
Salmonella typhimuriumATCC 14028	13	14	12	12	12	13	13
Enterococcus faecalisATCC29212	12	13	12	12	13	11	11
Listeria monocytogenes ATCC 19112	-	-	-	-	-	-	-
Enterobacter aerogenesATCC 13048	9	9	9	-	8	9	9
Klebsiella pneumoniaeATCC 13882	10	11	11	10	11	10	10
Serratia marcescensATCC 13880	10	10	10	9	10	11	11
Mycobacterium smegmatisATCC 607	17	18	16	14	17	15	15
Bacillus subtilisATCC 6633	14	15	14	14	15	15	15
Micrococcus luteusATCC 9341	15	15	14	13	14	15	15
Candida albicansATCC 10231	19	21	15	14	-	18	19
Candida utilisATCC 9950	19	18	16	15	19	19	19
Saccharomyces cerevisiaeATCC 9763	18	19	18	17	20	19	19

1) *P.pavonica* extract obtained from di-ethyl ether + AgNO₄(1:1)

2)Ppavonica extract obtained from hexan+ AgNO₃(1:1)
 2)Ppavonica extract obtained from hexan+ AgNO₃(1:1)
 4)Ppavonica extract obtained from methanol+ AgNO₃(1:1)
 5)Ppavonica extract obtained from ethanol+ AgNO₃(1:1)
 5)Ppavonica extract obtained from ethanol+ AgNO₃(1:1)

6)AgNO,

7) AgNO₃+ $dH_2O(1:1)$

Table 3. Antimicrobial effects of vinegar added P. pavonica extracts

Test Microorganisms	Inhibition diameter (mm) Vinegar Added Extracts						
Test Milcroorganisms	1	2			Extracts	6	7
Escherichia coliATCC 35218	9*	10*	10*	-	9*	14	10*
Pseudomonas aeruginosaATCC 35032	-	-	-	-	-	12	-
Proteus vulgarisATCC 33420	-	-	-	-	-	-	-
Stapylococcus aureus ATCC 25923	9	-	-	-	-	15	-
Stapylococcus epidermidis ATCC 12228	11*	9*	10	-	-	14*	-
Salmonella typhimuriumATCC 14028	10*	11*	11*	10*	9*	15	10
Enterococcus faecalisATCC29212	-	-	-	-	-	-	-
Listeria monocytogenes ATCC 19112	-	-	-	-	-	-	-
Enterobacter aerogenesATCC 13048	-	-	-	-	9*	13	-
Klebsiella pneumoniaeATCC 13882	-	-	-	-	-	-	-
Serratia marcescensATCC 13880	11	10*	10*	10*	13*	17	12
Mycobacterium smegmatisATCC 607	-	12	12	13	-	17	-
Bacillus subtilisATCC 6633	10	12	14	14	14	17	10
Micrococcus luteus ATCC 9341	12	11	14	14	17	10	-
Candida albicansATCC 10231	-	-	-	-	-	-	-
Candida utilisATCC 9950	-	-	-	-	-	-	-
SaccharomycescerevisiaeATCC 9763	-	-	-	-	-	-	-

* Static effect

1) *P.pavonica* extract obtained from di-ethyl ether + Vinegar (1:1)

2)*P.pavonica* extract obtained from hexan+ Vinegar(1:1)

3)P.pavonica extract obtained from nextal + Vinegar(1:1)
4)P.pavonica extract obtained from methanol+ Vinegar(1:1)
5)P.pavonica extract obtained from ethanol+ Vinegar(1:1)

6)Vinegar

7) Vinegar + $dH_2O(1:1)$

Table 4: Antimicrobial effects of cider added P. pavonica extracts

	Inhibition zone (mm) Cider Added Extracts							
Test Microorganisms								
	1	2	3	4	5	6	7	
Escherichia coliATCC 35218	14	13	12	12	14	18	14	
Pseudomonas aeruginosaATCC 35032	-	-	-	-	9	16	-	
Proteus vulgarisATCC 33420	-	-	-	-	-	16	-	
StapylococcusaureusATCC 25923	-	-	-	-	-	-	-	
Stapylococcusepidermidis ATCC 12228	-	-	-	-	-	-	-	
Salmonella typhimuriumATCC 14028	-	-	-	-	-	-	-	
Enterococcus faecalisATCC29212	-	-	-	-	-	-	-	
Listeria monocytogenes ATCC 19112	-	-	-	-	-	-	-	
Enterobacter aerogenesATCC 13048	-	-	-	-	-	-	-	
Klebsiella pneumoniaeATCC 13882	15	15	13	16	14	19	14	
Serratia marcescensATCC 13880	12	14	13	12	14	18	14	
Mycobacterium smegmatisATCC 607	-	13	15	14	12	15	12	
Bacillus subtilisATCC 6633	11	12	12	14	13	18	12	
Micrococcus luteusATCC 9341	-	-	12	-	16	22	12	
Candida albicansATCC 10231	-	-	-	-	-	-	-	
Candida utilisATCC 9950	-	-	-	-	-	-	-	
Saccharomyces cerevisiaeATCC 9763	-	11	-	-	-	-	-	

P.pavonica extract obtained from di-ethyl ether + Cider (1:1)
 P.pavonica extract obtained from hexan+ Cider (1:1)
 P.pavonica extract obtained from aceton+ Cider (1:1)
 P.pavonica extract obtained from methanol+ Cider (1:1)

5)*P. pavonica* extract obtained from ethanol+Cider (1:1)

6)Cider

7)Cider + dH_2O

Table 5: Antimicrobial effects of Flukanazoladded P.pavonica extracts

			Inhibitio	n Zone (1	nm)		
Test Microorganisms	Flukanazol		Fluk	kanazolA	dded Ext	racts	
	Tukanazoi	1	2	3	4	5	6
Candida albicansATCC 10231	30	35	33	34	33	36	36
Candida utilisATCC 9950	28	27	26	28	26	32	26
Saccharomyces cerevisiaeATCC 9763	-	16	15	17	15	-	14

P.pavonica extract obtained from di-ethyl ether + flucanazole (1:1)
 P.pavonica extract obtained from the hexan + flucanazole (1:1)
 P.pavonica extract obtained from aceton+ flucanazole(1:1)
 P.pavonica extract obtained from methanol+ flucanazole (1:1)
 P.pavonica extract obtained from ethanol+ flucanazole (1:1)
 AgNO3 + flucanazole(1:1)

Table 6: Antimicrobial effects of Amphotericin B added P. pavonica extracts

		Inhibition zone (m					
Test Microorganisms			Ampl	notericin B	Added Ex	tracts	
_	Amfoterisin B	1	2	3	4	5	6
Candida albicansATCC 10231	22	29	25	26	25	24	26
Candida utilisATCC 9950	25	22	24	27	25	28	27
SaccharomycescerevisiaeATCC 9763	15*	16	15	17	15	-	14

* Static effect

1) *P.pavonica* extract obtained from di-ethyl ether + Amphotericin B(1:1)

2) P.pavonica extract obtained from the hexan + Amphotericin B(1:1)

3) *P.pavonica* extract obtained from aceton+ Amphotericin B(1:1)

4) *P.pavonica* extract obtained from methanol + Amphotericin B(1:1)

5) *P.pavonica* extract obtained from ethanol+ Amphotericin B(1:1)

6) AgNO3 + Amphotericin B(1:1)

Table 7. MIC values determined with Cheker-Board method

	Test Microorgar	nisms
P. pavonica extract obtained from hexan+ AgNO ₃	Mycobacterium smegmatis	Candida albicans
	ATCC 607	ATCC 10231
10 μL extract+ 90 μL AgNO3	+	+
20 µL extract+ 80 µL AgNO3	+	+
30 µL extract+ 70 µL AgNO3	+	+
40 µL extract+ 60 µL AgNO3	+	-
50 µL extract+ 50 µL AgNO3	-	-
60 μL extract+ 40 μL AgNO3	-	-
70 μL extract+ 30 μL AgNO3	-	-
80 μL extractt+ 20 μL AgNO3	-	-
90 μL extract+ 10 μL AgNO3	-	-

Table 8. MIC values determined with Cheker-Board method

<i>P.pavonica</i> extract obtained from ethanol + vinegar	Test Microorganism Micrococcus luteus ATCC 9341
10 μL extract+ 90 μLvinegar	+
20 µL extract+ 80 µLvinegar	+
30 μL extract+ 70 μLvinegar	+
40 µL extract+ 60 µLvinegar	+
50 µL extract+ 50 µLvinegar	+
60 μL extract+ 40 μLvinegar	+
70 μL extract+ 30 μLvinegar	-
80 μL extract+ 20 μLvinegar	-
90 μL extract+ 10 μLvinegar	-

Table 9. MIC values determined with Cheker-Board method

Densuenies systematic abtained from di athul other Cidar	Test Microorganism
<i>P. pavonica</i> extract obtained from di-ethyl ether + Cider	Klebsiella pneumoniae ATCC 13882
10 μL extract+ 90 μLcider	+
20 μL extract+ 80 μL cider	+
30 μL extract+ 70 μLcider	+
40 μL extract+ 60 μLcider	+
50 μL extract+ 50 μLcider	+
60 μL extract+ 40 μLcider	-
70 μL extract+ 30 μLcider	-
80 μL extract+ 20 μLcider	-
90 μL extract+ 10 μL cider	-

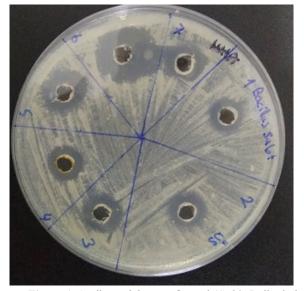


Figure 1. Antibacterial zones formed (1) 30μ L di-ethyl ether + 30 μ L vinegar, 2) 30 μ L hexane + 30 μ L vinegar, 3) 30 μ L asetone + 30 μ L vinegar, 4) 30 μ L methanol + 30 μ L vinegar, 5) 30 μ L ethanol + 30 μ L vinegar, 6) 60 μ L vinegar, 7) 30 μ L vinegar + 30 μ l dH₂O

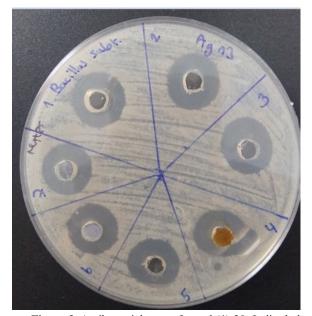


Figure 3. Antibacterial zones formed (1) 30μ L di-ethyl ether + 30 μ L %1 AgNO₃, 2) 30 μ L hexane + 30 μ L %1 AgNO₃, 3) 30 μ L asetone + 30 μ L %1 AgNO₃, 4) 30 μ L methanol + 30 μ L %1 AgNO₃, 5) 30 μ L ethanol + 30 μ L %1 AgNO₃, 6) 60 μ L %1 AgNO₃, 7) 30 μ L %1 AgNO₃+ 30 μ L dH₂O

Figure 2. Antibacterial zones formed (1) 30μ L di-ethyl ether + 30μ Lcider, 2) 30μ L hexane + 30μ Lcider, 3) 30μ L asetone + 30μ Lcider, 4) 30μ L methanol + 30μ Lcider, 5) 30μ L ethanol + 30μ Lcider, 6) 60μ Lcider, 7) 30μ L cider + 30μ l dH₂O