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Abstract: In meteorology, which studies atmospheric events, data representing various properties such as temperature, rainfall, 
and wind speed are collected regularly over a certain period. Unexpected trends in the data may indicate that an abnormal 
situation is approaching. Therefore, time series (TS) data play an essential role in the early detection of potential meteorological 
risks. However, applying effective models by considering many complex parameters in performing accurate analysis and 
anomaly detection (AD) is an important criterion. In this study, machine learning-based AD is performed using a dataset 
containing meteorological data on different features collected between January 1, 2019, and June 30, 2023, for Kazakhstan, 
which has the ninth-largest surface area in the world. The Hierarchical Temporal Memory (HTM) model was used for AD, 
which can provide more accurate forecasts by modeling long-term dependencies and producing effective results in solving TS 
problems. Detected anomalies are reported at various levels depending on threshold values. In addition, to analyze the ADs 
more precisely, correlations are calculated using the Spearman model, which allows us to determine the strength and direction 
of the monotonic relationship between variables. The study's findings show that the HTM is an effective model for AD using 
TS data on meteorological features. 
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Hiyerarşik Zamansal Bellek Modeli ile Meteorolojik Verilerdeki Anomalilerin Tespiti:  

Kazakistan Örneği Üzerine Bir Çalışma 
 

Öz: Atmosferik olayları inceleyen meteorolojide, sıcaklık, yağış ve rüzgar hızı gibi çeşitli özellikleri temsil eden veriler belirli 
bir süre boyunca düzenli olarak toplanmaktadır. Verilerdeki beklenmedik eğilimler anormal bir durumun yaklaşmakta 
olduğunu gösterebilmektedir. Bu nedenle, zaman serisi verileri potansiyel meteorolojik risklerin erken tespitinde önemli bir rol 
oynamaktadır. Ancak doğru ve güvenilir analizlerin gerçekleştirilmesinde ve anomali tespitinde karmaşık birçok parametreyi 
göz önünde bulundurarak etkin modelleri uygulamak önemli bir kriterdir. Bu çalışmada, dünyanın en büyük dokuzuncu 
yüzölçümüne sahip Kazakistan için 1 Ocak 2019 ile 30 Haziran 2023 tarihleri arasında toplanan farklı özelliklerdeki 
meteorolojik verileri içeren bir veri seti kullanılarak makine öğrenmesi tabanlı anomali tespiti gerçekleştirilmiştir. Anomali 
tespiti için uzun vadeli bağımlılıkları modelleyerek daha doğru tahminler sağlayabilen ve zaman serisi problemlerinin 
çözümünde etkin sonuçlar üreten Hiyerarşik Zamansal Bellek (HTM) modeli kullanılmıştır. Tespit edilen anomaliler eşik 
değerlerine bağlı olarak çeşitli seviyelerde raporlanmıştır. Ayrıca, anomali tespitlerini daha hassas bir şekilde analiz etmek için, 
değişkenler arasındaki monotonik ilişkinin gücünü ve yönünü belirlememizi sağlayan Spearman modeli kullanılarak 
korelasyonlar hesaplanmıştır. Çalışmanın bulguları, HTM modelinin meteorolojik özelliklere ilişkin zaman serisi verilerinin 
kullanıldığı AD problemlerinde etkin bir araç olduğunu göstermektedir. 
 
Anahtar kelimeler: Anomali tespiti, zaman serileri, meteorolojik anomaliler, makine öğrenmesi, hiyerarşik zamansal bellek. 
 

1. Introduction 
 

Time is a non-modifiable intrinsic factor that plays an important role in the human brain's learning process 
[1]. This intangible factor can be found in many different contexts, ranging from measurements of natural 
phenomena such as meteorology to artificial systems such as stock markets and robotics, and it can be found in 
real-world problems. The evaluation and effective modeling of phenomena with their temporal components [2] 
help to achieve more accurate predictions and advances in various fields of study and practical applications. In this 
context, temporal data allow in-depth data analyses thanks to the opportunities to capture the dynamics and 
evolving patterns inherent in complex phenomena [3]. Time series (TS), on the other hand, represent an ordered 
and temporally indexed collection of data points, usually obtained at regular intervals [4] [5]. TS are essential in 
various academic disciplines as they are numerical, continuous, and high dimensional. Each time point can often 
be associated with more than one variable or feature and needs to be constantly updated with new observations. In 
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this way, TS allows researchers to analyze and discover emerging trends, non-specific patterns, and existing 
relationships [6]. 

Time series analysis (TSA) has been an active research topic for researchers for many years [7] [8]. 
Researchers have conducted a great deal of research in areas covering various aspects such as TSA [9], searching 
for subsequences, segmentation metrologies [10], and dimensionality reduction techniques [11]. Early work in the 
literature attracted a great deal of attention from the database and pattern recognition communities. TSA was 
observed to contribute critical insights in a variety of domains while at the same time contributing to a better 
understanding of the broad scope of TSA and the development of techniques, thereby increasing the usability of 
these techniques in different contexts [6] [12]. Currently, TSA is widely used in fields ranging from cybersecurity 
[13] to finance [14], economics [14], and environmental sciences [13] [14] to perform subtasks such as revealing 
valuable features, making reliable predictions, and guiding decision-making processes. Furthermore, researchers 
have gained the ability to perform anomaly detection (AD) [15], outcome prediction, examine relationships 
between variables, analyze dependencies, patterns, and trends in TS, and evaluate the effects of various factors 
using statistical or Machine learning (ML)-based methods such as Hierarchical Temporal Memory (HTM). In this 
context, researchers can successfully perform basic tasks such as classification [16] [17], and clustering [18] using 
these techniques [2]. 

Anomalies refer to deviated, discordant, or outlier values that do not conform to the expected normal [19]. 
AD is one of the challenging tasks of Data Mining [19]. It is the process of detecting or identifying data points, 
anomalies, events, and components that deviate from the expected pattern [20]. Three main types of anomalies are 
usually identified in the literature [21]. The first type is the point anomaly, which results from the significant 
deviation of a data sample from the overall dataset  [22]. The second type is contextual anomalies, which exhibit 
anomalous behavior within a specific context. The third type is collective anomalies, which refer to similar data 
samples that exhibit anomalous behavior concerning the entire dataset [23]. Classical methods for AD, such as 
linear models [24], distance-based methods [25], and support vector machine [26], are still valid. However, the 
presence of multidimensional data may impose limitations, and difficulties may arise when dealing with large and 
complex systems due to the need for labeled anomalies. Furthermore, TSA can present additional challenges as it 
considers sequencing and cause-effect relationships along the time axis. Researchers have developed various 
methods to overcome these challenges [27]. 

Accurate detection of anomalies fulfills essential roles in decision-making, risk management, predictive 
maintenance, and early warning systems [28]. AD in TS problems is of great interest due to its practical 
applications and potential impact on various industries. Such AD helps organizations proactively approach critical 
problems, minimize losses, and improve operational efficiency. In the era of big data and increasing digitalization, 
effectively detecting anomalies in TS data is crucial [29]. Early detection of outliers in TS data can play a critical 
role in preventing costly failures and mitigating potential risks [30]. Identifying and flagging anomalous patterns 
in TS is critical in detecting fraudulent activities, identity or passport documents, insurance claims, and healthcare 
fraud [31], predicting system failures, and ensuring the smooth operation of complex systems [32]. 

AD in TS data is categorized as univariate and multivariate based on the input data [33] [34]. Univariate AD 
focuses on identifying deviations of individual variables from long-term patterns and identifies outliers according 
to the general distribution or discriminant model. On the other hand, multivariate AD problems involve multiple 
variables observed at each timestamp or time instant, and this type of AD considers the relationships and 
interactions between variables, which is a more complex process than univariate analyses [35]. Anomaly studies 
aim to detect point, contextual, collective, or pattern anomalies [36]. 

Traditional approaches in AD research usually include statistical, classification-based, clustering-based, and 
information-theoretic methods, such as PCA, Support Vector Machines, k-nearest Neighbor algorithm, and various 
correlation analysis techniques [28] [37]. However, these approaches can be needed to handle system dynamics 
that change over time, making it challenging to characterize anomalous contexts accurately. In recent years, 
successful results have been achieved in detecting complex contextual anomalies with dynamic and time-varying 
features, such as RNN-based architectures. Moreover, some works in the literature have provided an overview of 
semi-supervised, unsupervised, and hybrid DF techniques and discussed their advantages, disadvantages, and 
computational complexities [38]. In particular, other research focuses on deep learning-based AD approaches such 
as Boltzmann machines, Autoencoders, and RNNs [39]. In addition, AD has an essential role in many fields; there 
are various studies in the literature in this field, for example, in cyber security [40] [41], fraud detection [42], 
medical field, industrial damages, images, textual data, sensor networks, geochemical data processing [43], and 
various ML and non-ML techniques as well as statistical and spectral sensing methods for AD in discrete/symbolic 
sequences [28] [44] [45] in the work of Nassif et al., several ML techniques used in AD as independent models in 
various applications are presented hierarchically under the categories: classification, ensemble analysis, 
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optimization, rule-based systems, clustering, and regression. These methods can be used as independent models 
[44]. 

DL approaches differ from surface ML algorithms in that they can perform feature extraction and 
classification tasks simultaneously. Furthermore, these approaches differ regarding integrated functionalities and 
resource requirements, such as data dependency and hardware dependency [46]. In the field of AD, many DL-
based approaches have been proposed, especially in intrusion detection in cyber security [39] [47] [48]. Various 
aspects of using DL techniques have been discussed in detail. Multivariate AD involves multiple variables 
observed at the same timestamp or instant [34]. In such problems, multiple data points correspond to different 
variables at each time step. Such analyses present additional challenges compared to univariate analyses, as the 
relationships and interactions between variables need to be considered to develop an effective AD and modeling 
approach. Although various methods are presented in the literature for detecting anomalies in TS data, most of 
these methods primarily focus on univariate TS approaches [49]. Another essential approach in AD studies is 
HTM. HTM is a biologically based ML technique that mimics the architecture and functioning of the neocortex 
[19]. Notable features of HTM include sparsity, hierarchy, and modularity. The method uses three main 
components, encoder, spatial pooling (SP), and temporal memory (TM), to efficiently discover patterns and 
contexts in TS data. HTM can learn from continuously evolving data without the need for labeled data, which 
increases the usability of HTM in scenarios where manual labeling is difficult or costly. The continuous learning 
capability allows the model to adapt to changing data structures and effectively identify new anomalies [50] [51]. 
Furthermore, HTM can store, remember, and predict patterns in an aggregated manner, which provides the ability 
to anticipate the next pattern occurrence.  

AD can produce important outputs in various fields, including meteorology, where it plays an essential role 
in identifying irregular patterns, outliers, and anomalies in TS data. In particular, meteorologists are keenly 
interested in identifying anomalies in weather data to predict future outcomes [52]. Accurately detecting anomalies 
in meteorological data can contribute to critical disaster management, agricultural planning, and environmental 
monitoring decisions. For this reason, accurate and reliable analysis of meteorological data is of great importance 
for weather forecasts and climate change studies. Detection of anomalies in these analyses is critical in warning of 
extreme weather events and other unexpected situations. In addition, integrating AD methods into meteorological 
research offers many benefits, such as improving weather forecast accuracy, monitoring climate change dynamics, 
and assisting in disaster management. 

This study aims to develop a practical and sensitive approach for AD on TS data of meteorological events 
occurring from 1 January 2019 to 30 June 2023 in Kazakhstan, the ninth largest country in the world in terms of 
area. In this study, an AD approach based on HTM, which is among the state-of-the-art approaches known for its 
effectiveness in AD tasks [53] performed on TS problems, is implemented. AD performances are evaluated by 
considering the correlations of features. HTM, which can be applied unsupervised by eliminating the need for 
labeled data, has shown effective performance on TS data since it is designed in a hierarchical structure to capture 
complex temporal patterns. The publicly available dataset used in the study includes comprehensive 
meteorological data, including temperature, precipitation, cloud cover, atmospheric pressure, and wind [54]. In 
addition, this study contributes to developing methods for the sensitive, accurate, and reliable detection of unusual 
anomalies in meteorological TS data. The study focuses on developing an advanced and region-specific AD system 
in this context. It has the potential to assist in monitoring climate change dynamics and effective disaster 
management. 

The contributions of the paper presented below are summarized: 
• An efficient and sensitive approach for AD in meteorological TS data of Kazakhstan, covering the period 

from January 2019 to June 2023, is developed. 
• The applicability, performance, and effectiveness of HTM, a state-of-the-art unsupervised ML technique 

for AD, are presented. 
• Univariate AD was performed on meteorological features and output performances were evaluated. 
• Using a comprehensive data set, various meteorological parameters such as temperature, precipitation, 

cloud cover, atmospheric pressure, and wind properties are evaluated in terms of anomaly. 
• A sensitive, accurate, and robust AD system is proposed, which contributes to monitoring climate change 

dynamics and effective disaster management. 
• Thresholds are used to define the level of anomalies, and the Spearman correlation method was used to 

measure the strength and direction of the monotonic relationship between variables to improve anomaly 
sensitivity. In addition, this study is among the pioneering studies on HTM-based AD tasks on 
meteorological data. 
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This paper is organized into five main sections to contribute to a comprehensive study of the AD task on 
meteorological TS data using HTM. The study is organized according to the following sections: The second 
section, methodology, presents the HTM, its components, and the applied correlation method. The details of the 
proposed approach are explained in detail in the third section. The fourth section presents the experimental studies, 
the dataset and hyperparameters used, HTM-based anomaly results, correlation analysis results and findings. The 
last section is reserved for discussion and conclusion. 

 
2. Methodology 

 
This section provides an overview of the methodologies used to implement the proposed approach, focusing 

on the HTM approach and correlation techniques. The correlation techniques help in the meaningful interpretation 
of the output analyses of HTM conducted univariately to address the AD analysis process effectively. Thus, 
correlation methods effectively assess the interrelationships and dependencies in the data and provide an accurate 
and reliable handling of HTM outputs. 
 

2.1. HTM and components 
 

In statistical methods, a model is generated based on the data obtained from normal behavior. Then, the 
conformity of new samples to the model is performed by statistical inference test. According to the test results, the 
samples with a low probability of being generated from the learned model are removed as outlier samples [28]. In 
ML methods, labeled data are needed to solve anomaly classification problems. Although ML approaches have 
the potential to exhibit high performance in domain-specific AD problems, factors such as labeling cost and 
labeling accuracy of the data should be considered. However, distinguishing data exhibiting anomalous behavior 
in large volumes of flow data and parsing model input data sets may not produce reliable results. Unlike statistical 
and ML approaches, HTM, an unsupervised ML approach, can continuously learn evolving data models with the 
hierarchical components in its architecture and capture the temporal context efficiently. In addition, HTM has 
various advantages, such as applying to dynamic and complex data models, operating in real-time, being adaptable 
to AD scenarios involving univariate or multivariate analyses, and being robust to noise [19]. HTM is a detailed 
computational theory that mimics the working principles of the neocortex. HTM incorporates time-based learning 
techniques for capturing and recalling spatial and temporal patterns [55]. The primary data structure in HTM is 
sparse distributed representation (SDR) [19] [56] [57]. The HTM methodology for processing TS data includes 
essential components such as Encoder, Spatial Pooling (SP), and Temporal Memory (TM) [58]. The encoder part 
normalizes the data by converting the input data into binary representations called fixed-length SDRs [59]. This 
stage prepares the data for further processing. SP ensures that the encoded data maintains a constant sparsity, 
typically not exceeding 2%, to preserve essential features. The TM stage focuses on recognizing and extracting 
temporal information patterns after the SP step, thus providing a higher-level representation [60] [61]. Moreover, 
the other component in HTM represents the task of classification [62]. However, the classifier process is not 
included in this study. Figure 1 presents a visual representation of the HTM pipeline designed to handle AD. 

 

 
Figure 1. A general HTM pipeline for detecting anomalies in TS data [15] 

In HTM, which takes an approach similar to the Hebbian learning rule [63], the temporal pattern learning 
process first captures spatial patterns between input bits by frequently identifying bits that occur together. When 
these bits overlap, mini columns are activated. A set of active mini columns represents a spatial pattern. The HTM 
then starts to learn the transitions between these spatial patterns. Active cells connect with recently active cells via 
distal synapses and are pattern recognizers to predict future patterns. When the distal basal segment recognizes a 
memorized pattern, it depolarizes the cell, making it predictive. If the expected input occurs, the cell correctly 
predicts and activates; if an unexpected input arrives, all cells within the selected mini columns collectively 
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recognize it as a new pattern and activate. This collective process enables HTM to store, retrieve, and predict 
subsequent patterns smoothly [19] [64]. 
 

2.1.1. Encoder 
 

The encoder is responsible for normalization by transforming the input data into binary representations called 
fixed-length SDRs, making them suitable for the input forms of other components. SDRs are the main data type 
used in the cortex and is used throughout HTM systems. SDRs match memory space representations in terms of 
mismatch probability, robustness to noise, subsampling, and classification of vectors and combinations [59]. The 
encoder process is performed according to the fundamental parameters such as the length of the SDR vector to be 
generated, the number of open bits (value of 1) and the sparsity rate. SDRs generated with encoders designed with 
the right parameters have a strong potential for high performance in learning temporal sequences. In the HTM, 
there is a sequence of SDRs that can be designed differently depending on the specific purposes with various 
functions in different parts of the neuron and in the algorithm structure [57]. SDRs differ from standard computer 
notation, such as ASCII, because they are encoded for direct representation. They consist of an extensive sequence 
of bits, mostly zeros and a few ones, and are, therefore, sparse. In addition, each bit in an SDRs has semantic 
properties, so if two SDRs have more bits of overlapping value, the two SDRs have comparably similar meanings 
at different proportional values. Consequently, the first step in using an HTM system is to convert a data source 
into an SDRs using an encoder that determines which output bits will have a value of one or zero for a given input 
[65].  

Figure 2 (a) shows the SDR vector produced by processing the time and the first feature together on the 
dataset used with the encoder whose parameters are set. Figure 2 (b) shows the SDR vector that includes time and 
all features of the dataset, representing the first input of the dataset. In addition, the 1-valued bits of the presented 
SDR vectors are shown in red, and the 0-valued bits in black color, and their numerical occurrence numbers are 
also presented. 

 

 
Figure 2. (a) SDR produced by processing the timestamp and the first feature. (b) SDR containing all features of 
the first input of the timestamp dataset, representing the first input. 

 
2.1.2. Spatial pooling (SP) and temporal memory (TM) 

 
The SP phase ensures that the encoded data maintains a constant sparsity, typically not exceeding 2%, to preserve 
essential features. The TM phase focuses on recognizing and extracting temporal information patterns after the SP 
step, thus providing a higher-level representation [55] [56]. Moreover, the other component in HTM represents 
the classification task [62]. However, the classifier process is not included in this study. SP, responsible for SDR 
encoding of binary input data, combines competitive Hebbian learning rules and homeostatic excitability control 
[66]. In SP, binary vectors in the input space are transformed into sparse sequences. The SP ensures that the sparsity 
and overlap of the input space of the HTM are preserved. Therefore, similar input data have high overlap, while 
different input data have low overlap [67]. The bits (columns) that are active after the SP task to represent the first 
input of the dataset used in this study are given in Figure 3. 
 



Anomaly Detection in Meteorological Data Using a Hierarchical Temporal Memory Model: A Study on the Case of Kazakhstan 
 

486 
 
 

 
Figure 3. Active columns after SP process. 

The TM phase focuses on recognizing and extracting temporal information patterns after SP phase, thus 
providing a higher-level representation [60] [61]. In this way, it learns from the SDR sequences generated over 
time by the SP and predicts the next incoming pattern based on the temporal context of each input. The TM task 
follows the SP and determines the current active temporal state. The working principle of TM is to activate cells 
in columns, make them predictable and update the persistence of synapses [68]. 
 

2.2. Spearman's correlation 
 

Correlation analysis is a statistical method widely used to summarize scientific research data. Correlation 
analysis is used to determine whether there is a relationship between two variables and to assess the degree of 
interdependence by measuring the strength of the relationship (r) [69]. Regression approaches seek to express the 
specific form of the relationship between selected values of one independent variable and the means of all 
corresponding values of the second dependent variable. In this aspect, correlation differs from regression, but 
correlation is the basis of regression theory [70] [71]. The correlation coefficient, denoted as r, theoretically ranges 
between +1 and -1. When interpreting correlations, 0 indicates no linear relationship, +1 indicates a perfect positive 
linear relationship, and -1 indicates a perfect negative linear relationship. Furthermore, values between 0 and 0.3 
(or -0.3) represent a weak positive (negative) linear relationship, values between 0.3 and 0.7 (or -0.7) indicate a 
moderately positive (negative) linear relationship, and values between 0.7 and 1.0 (or -0.7 and -1.0) indicate a 
strong positive (negative) linear relationship. The correlation coefficient assumes linearity, which makes it reliable 
for linear relationships but not practical for non-linear relationships and requires careful consideration of linearity 
assumptions when interpreting data [72]. 

In statistics, Spearman's rank correlation coefficient, denoted ρ (rho) or sometimes rs, is named after Charles 
Spearman [73]. It is a nonparametric metric used to measure rank correlation and measures the statistical 
dependence between the ranks of two variables. This coefficient assesses how effectively a monotonic function 
can characterize the relationship between two variables. The Spearman correlation between two variables is 
essentially the Pearson correlation applied to the rank values of these variables. While Pearson correlation is 
concerned with assessing linear relationships, Spearman correlation focuses on monotonic relationships, whether 
linear or not. Without repeated data values, a reliable Spearman correlation of +1 or -1 is obtained when each 
variable is an optimal monotonic function of the other. The Spearman coefficient is suitable for both continuous 
and discrete ordinal variables. It is important to note that Spearman's ρ and Kendall's τ can be seen as exceptional 
cases of a more general correlation coefficient, reflecting their versatility in various statistical applications [74] 
[75]. In line with the information presented above, Spearman's correlation was applied to statistically examine the 
relationships between features in this study. 
 

𝑝 = 1 − [(6 ∗ ∑𝑑+)/(𝑛 ∗ (𝑛+ − 1))]                (1) 
 
In Equation 1, p represents Spearman's rank correlation coefficient. ∑𝑑+ is the sum of squared differences 

between the ranks of the corresponding data pairs. n represents the number of data pairs compared. 
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3. Proposed Approach 

 
In this study, the pipeline for the approach developed for performing AD on meteorological data with the 

HTM approach is presented in Figure 4. According to this structure, the data is considered as a whole and prepared 
as separate inputs by selecting features according to time information to transform them into a format suitable for 
the inputs of the ML model. The prepared input data were transformed into SDR vectors and prepared for the SP 
stage. Thus, the data were transformed into sparse sequences, and temporal information patterns were obtained. 
Overlaps were also detected with the SP. In the next phase, AD was performed by training the dataset with a hybrid 
network model that predicts the next model based on the temporal input. Then, each input was used in the TM 
phase to perform AD. Figure 3 shows the encoder outputs of the input data as described in Figure 2 and Figure 3. 
In addition, the parameters of each HTM component presented in Figure 4 were fine-tuned and applied. 
Information about the parameters is presented in detail in the sections on the experimental studies. 

 

 
Figure 4. (a) SDR generated by processing only the first feature with the timestamp. (b) SDR containing all 
features of the first input of the timestamp dataset. 

4. Experimental Studies 
 

In this section, correlation calculations and evaluations are presented to analyze the relationships between 
features in the experimental setting, results, and interpretation of outputs for AD experiments performed with 
HTM. 
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4.1. Experimental Setting 
 

4.1.1. Dataset 
 

For the detection of anomalies, a dataset [54] consisting of 11 features and data from 1642 days is used in this 
study. For all features in the dataset, measures of central tendency such as mean (μ) and median, as well as 
measures of dispersion such as maximum (max), minimum (min), and standard deviation (σ), are calculated and 
presented. The dataset was reorganized by calculating daily means or sums of hourly temperature (temp), rainfall 
(), snowfall (s), total_cloud (t_c), high_level_cloud (h_c), mid_level_cloud (ml_c), low_level_cloud (l_c), 
pressure (pr), wind_speed (w_s), wind_direction (w_d) and turbo_wind (t_w). In addition, p-values were 
calculated separately to assess the statistical significance of the data and to perform regular distribution tests to 
determine whether each attribute was normally distributed. Since the p-values for each attribute in the table were 
calculated below the generally accepted threshold value of 0.05, it was determined that it did not have a normal 
distribution according to the condition presented and expressed with a TRUE value. In addition, as indicated in 
Table 1, the daily values of some features were calculated by averaging, and the daily values of some features 
were summed. 

 
Table 1. Features and statistical details about the dataset used [54]. 

 
Date Range : January 1, 2019- June 30, 2023 
# Samples  : 1642 
# Features  : 11 

Averaged features : [temp], [t_c], [h_c], [ml_c], [l_c], [pr], [w_s], [w_d], [t_w] 

Summed features : [r],[s] 
   i∈{1,2,3,4,5,6,7,8,9,10, 11} -> Si 

Type temp 
(°c) r (mm) s 

(mm) 
t_c 
(%) 

h_c 
(km) 

ml_c 
(km) 

l_c 
(km) 

pr 
(hpa) 

w_s 
(m/s) 

w_d 
(degrees) 

t_w 
(m/s) 

μ 12.7 1.3 0.1 46.4 18.7 29.2 35.2 1017.4 3.2 198.4 5.0 
median 12.2 0.0 0.0 48.3 9.7 22.5 30.2 1017.8 2.7 201.8 4.2 

max 30.4 49.2 18.3 100.0 98.9 100.0 100.0 1041.5 13.5 344.9 21.3 
min -4.8 0.0 0.0 0.0 0.0 0.0 0.0 977.1 0.7 54.2 1.0 

σ 7.1 3.3 0.7 31.9 21.4 28.6 30.8 8.4 1.8 60.2 2.7 

p value p<0.05 ~0, 
True 

0, 
True 

~0, 
True 

~0, 
True 

~0, 
True 

~0, 
True 

~0, 
True 

~0, 
True 

~0, 
True 

0, 
True 

0, 
True 

 
A normal distribution test is a statistical procedure used to determine whether a data set conforms to a normal 

distribution, also known as a Gaussian distribution. Normality tests assess how closely data distribution conforms 
to the theoretical characteristics of a normal distribution, such as symmetry and specifically associated mean and 
standard deviation values. Commonly used normality tests include the Kolmogorov-Smirnov test, the Shapiro-
Wilk test, the Anderson-Darling test, and graphical methods such as the Q-Q plot. These tests are essential in 
statistical analysis as they enable the selection of appropriate statistical techniques and help the reliability of 
statistical inferences [76] [77] [78]. This study used the Kolmogorov-Smirnov technique to calculate the regular 
distribution tests for the characteristics. 
 

4.1.2. Hyperparameters 
 
Table 2 presents the hyperparameters adapted for the AD task in the HTM model. Each table row introduces 
hyperparameters related to a different component of the HTM framework, namely the Encoder, SP, and TM. In 
this context, Table 2 shows the configuration settings required to implement the HTM model with optimal 
performance in the AD context, separating the hyperparameters according to each HTM component. 
 

Tablo 2. Hyperparameters for the applied model. 
 

Encoder resolution: 0.88, size: 700, timeday: 30,1, weekend:21, sdralpha (predictor):0.1 

SP boostStrength: 3.0, columnCount: 1638, localAreaDensity: 0.04, potentialPct: 0.85, synPermActiveInc: 0.04, 
synPermConnected: 0.1, synPermInactiveDec: 0.006 

TM activationThreshold: 17, cellsPerColumn: 13, initialPerm: 0.21, maxSegmentsPerCell: 128, maxSynapsesPerSegment: 64, 
minThreshold: 10, newSynapseCount: 32, permanenceDec: 0.1, permanenceInc: 0.1, anomaly period: 1000 
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4.2. Experimental results 
 

This section includes HTM-based anomaly results with graphs for each feature. In addition, Spearman 
correlation results are also presented to evaluate the anomaly outputs more precisely by determining the strength 
of the relationship between the features. 
 

4.2.1. Results of HTM-based AD Approach 
 

This section presented the results of the experimental studies to detect significant anomalies from typical 
climate models using various meteorological features with the HTM approach. The figures below (Figures 5-15) 
show the anomaly scores and the metric values for each meteorological feature of interest. 

Figure 5 shows the anomaly scores and metric values for the Temperature feature. Notable high-level 
anomalies occurred on June 20, 2022, and July 20, 2022, indicating sudden temperature increases. In addition, 
moderate anomalies were observed on 13.07.2022 and several dates in August 2022, highlighting significant 
deviations from expected temperature trends. 

 

 
Figure 5. Plot of anomaly scores and metric values for the temperature feature. 

Figure 6 shows the anomaly scores for rainfall and the resulting metric values. High-level anomalies were 
detected on August 8, 2021, and July 14, 2021, and indicate anomalous precipitation events. Moderate anomalies 
were also recorded, indicating significant changes in precipitation patterns, especially on August 7, 2022, and 
April 15, 2022. 
 

 
Figure 6. Plot of anomaly scores and metric values for the rainfall feature. 

 
Figures 7 and 8 represent Snowfall and Total Cloud features, respectively. Snowfall anomalies were observed 

on February 11, 2021, January 15, 2021, December 16, 2022, and April 10, 2022. Total Cloud anomalies were 
relatively sparse, with only moderate anomalies detected on March 6, 2021. 
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Figure 7. Plot of anomaly scores and metric values for the snowfall feature. 

 
Figure 8. Plot of anomaly scores and metric values for the total cloud feature. 

Figure 9 shows anomalies in the High Cloud feature, with high-level anomalies recorded on December 28, 
2020. The mid-level anomalies were also spread over various dates in 2020 and 2021, highlighting the continuous 
deviations in the high cloud patterns. 

 

 
Figure 9. Plot of anomaly scores and metric values for the high-level cloud feature. 

Figures 10 and 11 show the anomalies in the Mid-level Cloud and Low Cloud features, respectively. For the 
Mid-level Cloud, significant high-level anomalies occurred on February 15, 2022, August 20, 2020, April 3, 2022, 
and August 29, 2020. The Low Cloud, on the other hand, showed high-level anomalies on October 1, 2020, and 
June 18, 2020. Mid-level anomalies were also observed to be spread over various dates. 
 

 
Figure 10. Plot of scores and metric values for the mid-level cloud feature. 
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Figure 11. Plot of anomaly scores and metric values for the low-level cloud feature. 

Figure 12 represents the results of AD in the pressure feature. No high-level anomalies were observed in the 
pressure feature. However, there is a moderate anomaly on February 12, 2023. 

 

 
Figure 12. Plot of anomaly scores and metric values for the pressure feature. 

Figure 13 represents wind speed, showing the absence of medium- and high-level anomalies and indicating 
consistent wind speed trends. In contrast, Wind Direction (Figure 14) exhibited high-level anomalies on February 
28, 2023, medium-level anomalies on December 17, 2022, and February 27, 2023, indicating significant changes 
in wind direction patterns. 
 

 
Figure 13. Plot of anomaly scores and metric values for wind speed feature. 

 
Figure 14. Plot of anomaly scores and metric values for wind direction feature. 

Finally, Figure 15 focuses on turbo wind, showing high-level anomalies on December 30, 2022, and January 
14, 2023. Mid-level anomalies extend to various dates in late December 2022, revealing anomalous wind behavior. 
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Figure 15. Plot of anomaly scores and metric values for the turbo wind feature. 

Table 3 summarizes the high and medium AD results obtained from the HTM-based AD method for various 
meteorological features. These features include Temperature, Precipitation, Snowfall, Total Cloud, High-level 
Cloud, Mid-level Cloud, Low-level Cloud, Pressure, Wind Speed, Wind Direction, and Turbo Wind. The table is 
divided into three columns: "Characteristics," "High-Level Anomaly Dates," and "Medium-Level Anomaly 
Dates." Anomaly levels are normalized between 0 and 100. 
 

Tablo 3. Dates for high and medium anomalies obtained with the HTM-Based AD approach for each feature. 
 

Features Anomaly Dates 
High Level Medium Level 

Temparature 

20.06.2022 30.07.2022 
20.07.2022 10.08.2022 

 

6.08.2022 
7.08.2022 
8.08.2022 
9.08.2022 

11.08.2022 
12.08.2022 

Rainfall 8.08.2021 7.08.2021 
14.07.2021 15.04.2022 

Snowfall 

11.02.2021 16.04.2022 
15.01.2021 17.04.2022 
16.12.2022 18.04.2022 
10.04.2022 20.02.2021 

Total Cloud None 6.03.2021 

High-level Cloud 

28.12.2020 24.12.2020 

 
27.12.2020 
1.01.2021 
2.01.2021 

25.12.2020 

Mid-level Cloud 

15.02.2022 28.08.2020 
20.08.2020 7.05.2023 
3.04.2022 6.05.2023 

29.08.2020 13.02.2022 
 10.05.2023 

Low-level Cloud 
1.10.2020 7.12.2020 

18.06.2020 21.06.2020 
 22.06.2020 

Pressure None 12.02.2023 
Wind Speed None None 

Wind Direction 
28.02.2023 8.03.2023 

 17.12.2022 
27.02.2023 

Turbo Wind 

30.12.2022 29.12.2022 
14.01.2023 23.12.2022 

 

24.12.2022 
25.12.2022 
26.12.2022 
27.12.2022 
28.12.2022 
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Thresholds of 60 for high anomaly level and 40 for medium anomaly level were used. The table provides 
examples of high and medium anomaly dates detected using the HTM-based AD approach for each meteorological 
feature. These dates are listed in descending order of the anomaly scores calculated for each feature. Notably, some 
meteorological features have multiple high and mid-level anomaly dates, indicating periods of significant deviation 
from their expected behavior. In contrast, total cloud, pressure, and wind speed do not have any high-level 
anomalies recorded during the observed period. However, this does not mean that low-level anomalies did not 
occur. The findings in Table 4 are a valuable reference for researchers and meteorologists, providing information 
on when certain meteorological features deviate from their usual patterns. These deviations can be further analyzed 
to understand the underlying causes and consequences of climate or weather conditions during the periods in 
question. 

 
4.2.2. Result of Spearman's correlation 

 
This study used Spearman's rank correlation technique to calculate the correlation values. This technique was 

applied because the characteristics of the data set used were not normally distributed. Unlike Pearson's correlation, 
Spearman's is a nonparametric measure that assesses monotonic relationships. Spearman correlation is valuable 
when dealing with data that do not meet linearity assumptions, such as ordinal data or data with outliers. By 
considering the order of data points rather than their actual values, this correlation technique provides a robust 
measure of association less sensitive to outliers and the shape of the relationship between variables, making it a 
versatile tool in various statistical analyses and research fields.  

 
Table 4. Spearman correlation results between the features in the dataset. 

 
Korelasyonlar 
  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

s1 
rho 1,000           
sig. (2-tailed) .           
n 1642           

s2 
rho -,014 1,000          
sig. (2-tailed) ,584 .          
n 1642 1642          

s3 
rho -,298** ,238** 1,000         
sig. (2-tailed) ,000 ,000 .         
n 1642 1642 1642         

s4 
rho -,259** ,647** ,223** 1,000        
sig. (2-tailed) ,000 ,000 ,000 .        
n 1642 1642 1642 1642        

s5 
rho ,100** ,344** -,023 ,517** 1,000       
sig. (2-tailed) ,000 ,000 ,358 ,000 .       
n 1642 1642 1642 1642 1642       

s6 
rho -,083** ,633** ,152** ,814** ,726** 1,000      
sig. (2-tailed) ,001 ,000 ,000 ,000 ,000 .      
n 1642 1642 1642 1642 1642 1642      

s7 
rho -,293** ,658** ,234** ,907** ,249** ,596** 1,000     
sig. (2-tailed) ,000 ,000 ,000 ,000 ,000 ,000 .     
n 1642 1642 1642 1642 1642 1642 1642     

s8 
rho -,176** -,455** -,102** -,416** -,364** -,527** -,346** 1,000    
sig. (2-tailed) ,000 ,000 ,000 ,000 ,000 ,000 ,000 .    
n 1642 1642 1642 1642 1642 1642 1642 1642    

s9 
rho -,266** ,384** ,242** ,441** ,172** ,381** ,436** -,309** 1,000   
sig. (2-tailed) ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 .   
n 1642 1642 1642 1642 1642 1642 1642 1642 1642   

s10 
rho -,113** ,365** ,185** ,445** ,051* ,263** ,524** -,182** ,319** 1,000  
sig. (2-tailed) ,000 ,000 ,000 ,000 ,040 ,000 ,000 ,000 ,000 .  
n 1642 1642 1642 1642 1642 1642 1642 1642 1642 1642  

s11 
rho -,251** ,374** ,180** ,407** ,177** ,375** ,404** -,288** ,881** ,288** 1,000 
sig. (2-tailed) ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,000 . 
n 1642 1642 1642 1642 1642 1642 1642 1642 1642 1642 1642 

*. The correlation is significant at the 0.05 level (2-tailed) 
**.The Correlation is significant at the 0.01 level (2-tailed) 

i ∈ features {1,2,3,4,5,6,7,8,9,10,11} -> Si 
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Table 4 presents the results of the Spearman rank correlations between the variables (s1 to s11) based on the 
data set of 1,642 data points used in this study. The table, obtained with SPSS software, provides detailed 
information on the strength of the relationships between variables using nonparametric statistical measures. The 
table identifies correlations by significance values (Sig.) and rho values. In the table, the significance level is 
emphasized with asterisks; correlations marked with one asterisk (*) are significant at the 0.05 level, while 
correlations marked with two asterisks (**) are highly significant at the 0.01 level. 

 
In the correlation table showing the outputs of the analyses, the acceptability, strength, and direction of the 

relationship between the variables are presented. The correlation coefficient (rho) can take values between -1 and 
+1. While -1 means that one of the variables increases while the other decreases, +1 means that the variables move 
in the same direction. If this coefficient is 0, it indicates no relationship between the variables [79]. However, the 
strength of the relationship is determined by the absolute value of the correlation coefficient [80]. According to 
the correlation coefficients, researchers consider the degree of relationship between two variables as 0.7 and above 
as strong and 0.9 and above as very strong. Other levels indicate moderate (rho>0.5) and weak relationships [81]. 

 
Table 4 shows significant strong and very strong correlations within the dataset. The table shows a significant 

relationship between 'total_cloud' and 'min_level_cloud' with a strong positive correlation of 0.814. A strong 
correlation of 0.907 between 'total_cloud' and 'low_cloud' indicates a strong and positive relationship between 
these two parameters. In addition, a strong correlation of 0.726 between 'high_level_cloud' and 'mid_level_cloud.' 
Furthermore, the correlation coefficient 0.881 between 'wind_speed' and 'turbo_wind' indicates a strong 
relationship between these variables. In terms of moderate correlations, the table shows that there is a positive 
correlation between "rainfall" and "total_cloud," "mid_level_cloud" and "low_level_cloud," a positive correlation 
between "total_cloud" and "high_level_cloud," a positive correlation between "mid_level_cloud" and 
"low_level_cloud," a negative correlation with "pressure" and finally a positive moderate correlation between 
"low_level_cloud" and "wind_direction." 

 
5. Discussion and Conclusion 

 
This study aims to perform AD tasks on time-indexed data obtained for meteorological events between 

January 1, 2019, and June 30, 2023, in Kazakhstan, the ninth-largest country in the world. AD tasks are performed 
using HTM, an unsupervised machine-learning model inspired by the human neocortex. The HTM model is one 
of the state-of-the-art approaches known for its effectiveness on TS problems. In addition, correlation analyses 
were performed to determine the strength and direction of monotonic relationships between meteorological 
features. In correlation analyses, the Spearman method was applied depending on the distribution characteristics 
of the data. Thus, the correlations between variables were considered for more precise and accurate AD. 

According to the results obtained from the experimental studies, ten anomalies were detected in temperature, 
4 in precipitation, 8 in snowfall, 1 in total cloud cover, 6 in high-level cloud cover, 9 in medium-level cloud cover, 
5 in low-level cloud cover, and 1 in pressure. No anomalies were detected in wind speed. In the wind direction 
and turbo wind features, 4 and 9 high and medium anomalies were detected, respectively. The HTM model 
successfully detected 18 high-level and 39 mid-level anomalies. It was concluded that the HTM model detected a 
total of 57 different anomalies in the detection of anomalies in meteorological conditions. According to the results 
of Spearman correlation analysis between meteorological features, strong relationships were found between some 
variables. This shows that meteorological parameters are closely related to each other. The HTM model and 
correlation analysis results guide researchers in detecting abnormal conditions and effectively detecting high-level 
and low-level abnormal conditions. However, in the face of limitations such as the univariate rather than 
multivariate addressing of AD problems, this has been addressed with the help of correlation analyses. The results 
of the experimental studies show the HTM model's effectiveness, which can detect anomalies in various 
meteorological features. In this context, the findings show that the HTM model is an effective tool for detecting 
anomalies in meteorological data and has an effective potential in solving TS problems related to meteorological 
events. 

Future studies are planned to use successful models such as HTM and LSTM to analyze early forecasts of 
meteorological events. These models have significant potential to process complex data to identify important 
trends and detect potential anomalies. This will provide a stronger and more effective basis for a better 
understanding of meteorological events and forecasting future weather events. 
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