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Abstract  Öz 

Total shoulder arthroplasty (TSA) is a surgical procedure 

addressing severe pain and restricted shoulder joint 

movement. During TSA surgery, X-ray images guide the 

selection of the prosthetic implant suitable for the patient 

from a variety of models produced by different 

manufacturers. However, prostheses may wear or loosen 

over time, thus requiring periodic evaluation and 

replacement. Currently, the process involves taking new X-

ray images from patients, resulting in variability in expert 

opinions on implant types. Therefore, there is a need for 

highly accurate automated diagnostic systems to help 

recognize unknown implants. In this study, we present a 

performance comparison of vision transformer (ViT) based 

models for automatic shoulder implant classification from 

X-ray images. Fine-tuning of pre-trained ViT models on a 

publicly available shoulder X-ray dataset showed high 

success in terms of accuracy, precision, sensitivity, and F-

measure metrics. The Swin-B model yielded the highest 

results with 93.84\% accuracy, 88.15\% precision, and 

85.52\% recall. These results showed that ViT based 

models can help improve treatment planning by providing 

reliable identification of shoulder implant manufacturers 

and model information and time efficiency, especially for 

specialists. 

 Total omuz artroplastisi (TSA), şiddetli ağrı ve kısıtlı omuz 

eklemi hareketini ele alan cerrahi bir prosedürdür. TSA 

ameliyatı sırasında röntgen görüntüleri, farklı üreticiler 

tarafından üretilen çeşitli modeller arasından hastaya uygun 

protez implantın seçimine rehberlik etmektedir. Bununla 

birlikte, protezler zamanla aşınabilir veya gevşeyebilir, bu 

nedenle periyodik değerlendirme ve değiştirme 

gerektirmektedir. Halihazırda bu süreç, hastalardan yeni 

röntgen görüntülerinin alınmasını gerektirmekte ve implant 

tiplerine ilişkin uzman görüşlerinde değişkenliğe neden 

olmaktadır. Bu nedenle, bilinmeyen implantları tanımaya 

yardımcı olacak yüksek doğrulukta otomatik teşhis 

sistemlerine ihtiyaç vardır. Bu çalışmada, X-ray 

görüntülerinden otomatik omuz implantı sınıflandırması 

için görü dönüştürücü (ViT) tabanlı modellerin performans 

karşılaştırması sunulmaktadır. Önceden eğitilmiş ViT 

modellerinin herkese açık bir veri kümesi üzerinde ince 

ayarı doğruluk, hassasiyet, duyarlılık ve F-ölçümü 

metriklerinde yüksek başarı göstermiştir. Swin-B modeli 

%93.84 doğruluk, %88.15 kesinlik ve %85.52 duyarlılık ile 

en yüksek sonuçları vermiştir. Bu sonuçlar, ViT tabanlı 

modellerin omuz implantı üreticilerinin ve model 

bilgilerinin güvenilir bir şekilde tanımlanmasını ve 

özellikle uzmanlar için zaman verimliliği sağlayarak tedavi 

planlamasının iyileştirilmesine yardımcı olabileceğini 

göstermiştir. 

Keywords: Total shoulder arthroplasty, Shoulder implants, 

X-ray, Classification, Vision transformer 

 Anahtar kelimeler: Total omuz artroplastisi, Omuz 

implantları, X-ray, Sınıflandırma, Görü dönüştürücü 

1 Introduction  

The shoulder is one of the most complex and commonly 
used joints in the body. Total shoulder arthroplasty (TSA) is 
a surgical procedure performed on patients who experience 
severe pain and restricted movement in the shoulder joint due 
to conditions such as osteoarthritis and rheumatoid arthritis 
[1-3]. During TSA surgery, the dysfunctional joint is 
removed, and a prosthetic implant is inserted in its place. X-
ray images are used to determine the appropriate type of 
prosthesis. This surgical intervention aims to alleviate pain 
and improve joint function, allowing patients to regain 
mobility and enhance their overall quality of life. 

Nowadays, there are several manufacturers of shoulder 
prosthetics, each offering different models tailored to 
individual patients. Despite the advancements in prosthetic 
materials and surgical techniques, prostheses may experience 
wear or loosen over time. Therefore, it is essential to 
periodically evaluate the condition of the prosthesis after the 
surgery and replace it if necessary [4]. Additionally, in cases 
of accidents or injuries, the existing prosthesis might get 
damaged and require replacement. To ensure a rapid and 
successful process of prosthesis improvement or replacement, 
it is crucial for both the patient and the doctor to be aware of 
the manufacturer and model information. However, 
incomplete medical records may lead to uncertainty in such 
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situations. Consequently, a thorough examination by medical 
experts is conducted by obtaining new X-ray images from the 
patient to verify the manufacturer and model information of 
the prosthesis. Due to the reliance on expert opinions, time 
consumption, and the taxing nature of this examination, there 
is a demand for automated systems to aid in this process.  
The contributions of automated systems are as follows: 

 Fast and efficient results: Automated systems quickly 
analyze X-ray images and provide instant results. This 
reduces waiting times for patients and accelerates the 
treatment process. 

 High precision and accuracy: Machine learning 
algorithms work with large datasets to achieve high 
precision and accurate results. This ensures the correct 
identification of shoulder implants. 

 Objective decision-making: Automated systems can 
make objective decisions without being influenced by 
human factors. This eliminates the risk of 
misinterpretation or personal biases. 

 Continuous improvement: Automated systems can be 
updated with new datasets and continue learning. This 
allows the system to improve its performance over time. 

 Reduces expert workload: Automated systems alleviate 
the burden on experts by eliminating the need to 
manually review X-ray images continuously. It enables 
experts to use their time more efficiently. 

In summary, automated systems offer rapid, accurate, and 
efficient results, leading to better healthcare services and 
increased patient satisfaction. Moreover, they help healthcare 
professionals by reducing their workload and improving the 
overall efficiency of the treatment process.  

Traditional machine learning methods, such as support 
vector machines and decision trees, often necessitate manual 
feature engineering and struggle with complex, high-
dimensional data. The reduced utilization of classical 
machine learning approaches in biomedical image processing 
can be primarily attributed to their limitations in 
automatically extracting intricate features and patterns from 
extensive datasets. In recent years, however, the ability of 
deep learning to automatically learn from data, perform 
hierarchical feature extraction, and demonstrate versatility 
has positioned it as a powerful and preferred approach in 
biomedical image processing tasks. This has contributed to 
remarkable advancements in medical diagnosis and patient 
care. For a more detailed discussion and comparison, readers 
are referred to research papers [5, 6]. In the literature, several 
deep learning-based studies have been proposed for the 
detection and classification of shoulder implants from X-ray 
images [4, 7-12]. To get an idea about the effectiveness and 
applicability of deep learning in addressing the complexity of 
shoulder implant detection and classification from X-ray 
images, we can summarize these studies as follows. 

Urban et al. fine-tuned six different pre-trained deep 
learning CNN architectures (VGG-16, VGG-19, ResNet-50, 
ResNet-152, NASNet, DenseNet-201) for the classification 
of shoulder implants on shoulder implant dataset [7]. The 
dataset consists of 597 X-ray images of shoulder implants, 
involving 16 different models from four different implant 
manufacturers. Through 10-fold cross-validation, they 
achieved the highest classification performance with an 
accuracy of 80.4% using the NASNet architecture. Yi et al. 
used a different dataset containing 482 X-ray images of 

shoulder implants belonging to five different implant models 
[8]. Instead of training a single classifier for all implant 
models, they trained five separate ResNet-152 architectures 
as binary classifiers for each implant model. Through 20-fold 
cross-validation, they achieved AUC-ROC values ranging 
from 0.86 for Solar to 1.0 for Zimmer, indicating varying 
levels of performance for different implant models. However, 
using multiple classifiers may add complexity to the overall 
system and require more computational resources. Yilmaz 
proposed a multi-channel CNN model that introduces a novel 
channel selection layer for choosing the most prominent 
feature filters [9]. By applying effective feature selection 
among channels for each image, the model significantly 
improved the accuracy rate. The proposed method achieved a 
higher performance with an accuracy rate of 97.2%. Sultan et 
al. proposed a CNN-based method for the classification of 
shoulder implants [10]. They used rotational data 
augmentation to increase the training dataset by 36 times. 
Modified ResNet and DenseNet network models were 
combined in depth to form the DRE-Net network ensemble 
architecture. Through 10-fold cross-validation, they achieved 
an accuracy of 85.92%, an F1 score of 84.69%, a precision of 
85.33%, and a recall of 84.11%. Efeoglu et al. evaluated 12 
different classifiers to classify shoulder implants from three 
different manufacturers [11]. By employing 10-fold cross-
validation, they found that the K-NN algorithm achieved the 
highest accuracy of 74%, outperforming the other algorithms. 
Sivari et al. proposed ten distinct hybrid classifier models by 
combining deep learning and machine learning algorithms 
and then subjected the models to statistical testing [4]. 
According to the experimental findings, the DenseNet201 + 
Logistic Regression model achieved an impressive accuracy 
of 95.07%. In contrast to other methods, Karaci utilized the 
YOLOv3 object detection model to detect the head region of 
shoulder implants and then fed these regions as inputs to 
various CNN architectures [12]. As a result, focusing on the 
head region of the implant using the YOLOv3 object 
detection model improved the classification accuracy. By 
combining YOLOv3 with the DenseNet201 model, they 
achieved an accuracy of 84.76%. However, it's worth noting 
that using the YOLOv3 object detection model may introduce 
additional computational complexity and require more 
resources than other methods. These studies collectively 
highlight the effectiveness and versatility of deep learning 
methods, especially CNN architectures, for the detection and 
classification of shoulder implants from X-ray images. The 
advancements made in this area hold great promise for 
enhancing medical imaging and facilitating implant-related 
decision-making in clinical settings. 

Convolutional neural networks (CNNs) have 
demonstrated significant success in various medical image 
analysis tasks, including the classification of shoulder 
implants, thanks to their ability to learn complex 
representations from data. However, the limited local 
receptive field in the convolution operation restricts the 
capture of long-range pixel dependencies [13]. To overcome 
this limitation, transformer architectures, inspired by their 
remarkable achievements in natural language processing 
[14], have been integrated into CNN architectures to encode 
long-range dependencies and learn more efficient feature 
representations [15]. The vision transformer (ViT) model 
proposed by Dosovitskiy et al. marked the first application of 
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transformer-based architectures to images, formulating the 
image classification task as predicting a sequence of image 
patches [16]. Following this pioneering work, ViT-based 
approaches [17,18] have been proposed and demonstrated 
state-of-the-art performance across various datasets [19-22]. 

In this study, the use of vision transformer models, which 
have recently become a popular area in deep learning 
architectures, is proposed for effective shoulder implant 
classification. Most of the studies in the literature are based 
on classical machine learning and CNN-based approaches. 
However, adapting transformer models for images has been 
shown to yield more effective results than CNNs. Due to their 
high accuracy and often superior performance compared to 
CNNs, many new studies have started incorporating vision 
transformer models. This research investigates the success of 
transformer models in shoulder implant classification and 
provides detailed comparisons with other CNN-based 
methods. To ensure objectivity and comparability with other 
approaches, a publicly available dataset is used. The 
experimental results show that vision transformers offer 
highly successful performance and generalization ability.  

The contributions of this work can be summarized as 
follows: 

 We present a pioneering approach for shoulder implant 
classification utilizing ViTs, showcasing the use of this 
emerging technology in the medical imaging domain. 

 Through the fine-tuning of pre-trained ViT models, we 
achieve enhanced performance compared to traditional 
CNN-based models such as ResNet-50, Inceptionv3, and 
MobileNetv3. Despite challenges such as variable image 
resolution and class imbalance in a small dataset, the 
ViT-based approach outperforms individual CNN 
models. 

 We achieve results that are competitive with the latest 
studies in the current literature. This underlines the 
significance of the proposed ViT-based approach in 
keeping pace with, and potentially surpassing, the state-
of-the-art in shoulder implant classification from X-ray 
images. 

The remaining sections of the paper are as follows: 
Section 2 provides a detailed explanation of the vision 
transformer structures, the publicly available shoulder 
implant dataset, and evaluation metrics. Section 3 presents the 
experimental results and discussion. Finally, Section 4 offers 
recommendations and conclusions. 

2. Material and methods 

All experiments were conducted on a computer equipped 

with an Intel(R) Core(TM) i9-11900K 3.50 GHz CPU and 

an NVIDIA GeForce RTX 3080 12GB GPU. Python 

programming language and PyTorch deep learning 

framework have been used for implementing the proposed 

vision transformer-based and CNN-based models in this 

study. 

2.1 Dataset 

In this study, a publicly available dataset consisting of 

597 X-ray images of shoulder implants [7] was utilized. The 

dataset was selected due to its currency, having been 

introduced in 2020 and widely adopted in recent literature.  

The dataset encompasses X-ray images from four distinct 

shoulder implant manufacturers: 83 images from Cofield, 

294 from Depuy, 71 from Tornier, and 149 from Zimmer. 

Sample X-ray images representing the four classes in the 

dataset can be found in Figure 1. The dataset poses several 

challenges, including variable and relatively low image 

resolution. Additionally, there are variations in image 

contrast and an imbalanced distribution of samples among 

the classes.  

For a fair comparison, we used the same setting as in the 

state-of-the-art study by Sivari et al. [4], where the dataset 

was divided into two subsets: 90% for training and 10% for 

testing. Furthermore, for 10-fold cross-validation, the 

training set was further partitioned into ten groups, with nine 

sets used for training and one set for validation in each fold. 

During the dataset split, random images were selected from 

each class. Additionally, measures were taken during each 

cross-validation fold to prevent scenarios where all selected 

validation samples belonged to a single class or where 

certain classes had no representative samples. 

 

 

 

 

Figure 1. Some sample images from different 

manufacturers in the dataset (a) Cofield (b) Depuy (c) 

Tornier (d) Zimmer 

 

2.2 Vision transformer (ViT) model and its variants 

In recent years, Transformers, introduced by Vaswani et 
al. [14], have emerged as highly successful deep learning 
architectures in Natural language processing (NLP) tasks. 
The superior performance of Transformers in NLP has 
motivated researchers to adapt them for computer vision 
tasks.  The vision transformer (ViT), proposed in 2020 [16], 
has garnered significant attention for its promising results in 
computer vision tasks. 

The ViT architecture adopts an attention mechanism that 
weights the importance of each part of the input image 
differently, in contrast to the traditional convolutional layers 
used in CNNs. The general architecture of the vision 
transformer model is shown in Figure 2. 
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Figure 2. The general architecture of the Vision Transformer (ViT) model 

In the ViT model, the input image, represented by 𝑥 ∈
𝑅𝐻×𝑊×𝐶, is transformed into a smaller array of image 
patches. Each reshaped image patch, denoted as 𝑝, is mapped 
to the 𝑧0 vector using a learned embedding matrix 𝐸 with 
Equation (1). 
  

𝑧0 = [𝑥𝑐𝑙𝑎𝑠𝑠; 𝑥𝑝
1𝐸; 𝑥𝑝

2𝐸; … ; 𝑥𝑝
𝑁𝐸] + 𝐸𝑝𝑜𝑠 (1) 

 

where 𝐸 ∈ 𝑅(𝑃2×𝐶)×𝐷, 𝐸𝑝𝑜𝑠 ∈ 𝑅(𝑁+1)×𝐷 and 𝑥𝑝 ∈

𝑅𝑁×(𝑃2×𝐶). 𝑁 represents the number of extracted image 
patches and 𝐶 indicates the number of channels. The 𝑥𝑐𝑙𝑎𝑠𝑠 
represents the signal added to the image patches and is used 
for classification purposes. 

The transformer encoder module consists of identical 
layers denoted by 𝐿𝑥. Each layer is composed of multi-head 
self-attention (MSA), multi-layer perceptron (MLP), and 
layer normalization (LN) along with residual connections. To 
achieve the output map 𝑧𝑙 of the same length as the input 𝑧0, 
the following steps are applied with Equation (2-3). 
 

𝑧𝑙
′ = 𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1 (2) 

  

𝑧𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝑧𝑙
′)) + 𝑧𝑙

′ (3) 


where 𝑙 = 1. . . 𝐿 represents each ViT encoder layer, and the 
output of each layer is fed as input to the next layer. The final 
MLP layer is placed on the output of the 𝐿 identical encoder 
layers, and along with the softmax classifier, it is used for 
classifying the learned image representations. 

The self-attention mechanism is employed to predict the 
relationship between elements in the input. In essence, an 
attention layer combines the total information from all input 
elements to update each component in the sequence. The 
interaction obtained from the inputs is transformed by three 
learnable weight matrices, query (𝑊𝑄), key (𝑊𝐾), and value 
(𝑊𝑉) matrices. For a given input array 𝑋, the input is first 
projected into these weight matrices as follows: 𝑄 = 𝑋𝑊𝑄, 
𝐾 = 𝑋𝑊𝐾 , and 𝑉 = 𝑋𝑊𝑉. The output of the self-attention 
layer is calculated with Equation (4). 
 

where 𝑑𝑘 is a scaling factor and the result of self-attention is 
combined with the input using the softmax function. 

In the realm of ViT models, two noteworthy 
advancements have emerged, namely, the data-efficient 
image transformer (DeiT) and the Swin Transformer. These 
innovations address crucial challenges in large-scale training 
datasets and processing efficiency for ViT models. 

2.2.1 Data-efficient image transformer 

DeiT [17] addresses the need for large-scale training 
datasets in ViT by incorporating an additional distillation 
token in its input, enabling it to achieve success with fewer 
data. This model interacts with class and patch tokens through 
self-attention layers and undergoes learning through 
backpropagation with the distillation token. The distillation 
token employs a teacher-student formulation within a 
knowledge distillation framework. 

2.2.2 Swin transformer 

Swin transformer [18] introduces a novel hierarchical 
design that divides the input image into non-overlapping 
"windows" to efficiently process large-scale images. Unlike 
traditional image transformers that operate on fixed-size 
patches, Swin Transformer adopts a "shifted window" 
mechanism, aiming to capture overlapping information 
between adjacent windows. Swin Transformer's key feature 
is its self-attention and shifted window mechanisms, which 
allow large images to be processed in parallel. The 
hierarchical self-attention mechanism provides better feature 
representation by capturing both local and global 
dependencies. The sliding window mechanism allows the 
network to be less sensitive to the order of the input sequence, 
thus contributing to the robustness and generalization of the 
model. 

2.3 Evaluation metrics 

We used accuracy (ACC), precision (PRE), recall (REC), 

and f-measure (FM) to evaluate the performance of the 

proposed shoulder implant classification models [23]. ACC 

is calculated as the ratio of correctly predicted instances to 

𝑆𝑒𝑙𝑓 − 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

) (4) 
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the total number of instances in the test set and indicates the 

overall accuracy of the classifier. PRE is the ratio of correct 

positive predictions to the total number of positive 

predictions made by the classifier. REC measures the ability 

of the classifier to correctly identify positive examples. The 

FM is the harmonic mean of precision and recall and 

provides a more balanced assessment of the classifier's 

performance. These metrics are calculated as given in 

Equation (5). 

 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑀 =
2 × 𝑃𝑅𝐸 × 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
 

(5) 

 

We also used a confusion matrix to illustrate the 

relationship between actual class values and the class values 

predicted by the classifier. 𝑘 𝑥 𝑘 confusion matrix was 

created for the 𝑘-class classification problem. The [𝑖;  𝑗] cells 

of the confusion matrix (𝑖 =  1, … , 𝑘;  𝑗 =  1, … , 𝑘) indicate 

the frequencies of observations related to the actual class 𝐶𝑖 

and the predicted class 𝐶𝑗. Table 1 shows an example 

confusion matrix representation for a 3-class problem. 

 

Table 1. A confusion matrix representation for the multi-

class problem 

 
Predicted Class 

𝐶1 𝐶2 𝐶3 

Actual 

Class 

𝐶1 a b c 

𝐶2 d e f 

𝐶3 g h i 

 

3. Results and discussion 

In this section, the performance of the proposed ViT-
based models designed for shoulder implant classification is 
meticulously compared with the latest CNN-based models. 
To ensure optimal accuracy during the training of all 
networks, a transfer learning strategy is employed, 
significantly reducing both time and data resource 
requirements. Throughout the learning process, the AdamW 
optimizer was used with a learning rate of 1e-5 and a weight-
decay regularization value of 1e-8. The cross-entropy loss 
function is employed as the designated error function for 
optimal model learning. Uniform parameters are maintained 
across all models to ensure a fair and comparable assessment 
of both ViT-based and CNN-based models in their 
classification performance for shoulder implants. The batch 
size for each model is set at 4, and the learning process epoch 
number is set to 60.  

The results presented in Table 2 provide a detailed 

overview of the classification outcomes achieved by each 

variant of the ViT-based models and three prominent CNN-

based models, showcasing the superior performance of ViT 

models in the context of shoulder implant classification. 

Notably, the Swin Transformer model versions, ranging from 

Tiny (T), Small (S), Base (B), and Large (L), exhibit the 

highest classification accuracies among all models 

considered. Specifically, the Swin-B model stands out with 

an impressive accuracy of 93.84%. This accuracy is 

accompanied by a precision value of 88.15% and a recall 

value of 85.52%, underscoring the robustness and reliability 

of the Swin-B model in correctly classifying shoulder 

implants. Comparatively, the results obtained with all ViT 

models surpass those achieved by three well-established 

CNN-based models, namely ResNet50 [24], Inceptionv3 

[25], and MobileNetv3 [26].  

 
Table 2. Performance comparison of the proposed ViT-

based models with CNN-based models 

Model ACC PRE REC FM 

ResNet-50 72.30 - - - 

Inceptionv3 87.69 73.36 71.46 71.09 

MobileNetv3 78.46 53.09 52.06 52.32 

ViT-T 82.3 64.21 65.81 63.15 

DeiT-T 86.15 70.13 63.64 64.31 

Swin-T 90.76 80.33 77.84 77.76 

ViT-S 87.69 74.67 68.59 69.49 

DeiT-S 89.23 74.65 73.02 70.71 

Swin-S 91.53 86.38 76.38 77.90 

ViT-B 93.07 83.6 85.52 84.39 

Deit-B 91.53 82.99 77.44 78.69 

Swin-B 93.84 88.15 85.52 85.93 

ViT-L 91.53 85.61 79.89 81.5 

DeiT-L 93.84 86.60 86.95 85.36 

Swin-L 93.84 87.36 83.69 83.94 

 

While the highest accuracy attained by the Inceptionv3 

model is 87.69%, the Swin-B model significantly 

outperforms it with a remarkable accuracy of 93.84%. This 

observation underscores the substantial advancements 

offered by vision-transformer models in the domain of 

shoulder implant classification. To validate the accuracy and 

loss variations during the training of the Swin-B model for 60 

epochs, we present the Figure 3. 

In Figure 3(a), both training and validation accuracies 

demonstrate swift convergence towards 100%, indicating 

robust learning. Correspondingly, in Figure 3(b), the loss 

values converge rapidly towards 0, underscoring the effective 

optimization of the model. 

These results affirm the potential contributions of vision-

transformer models, highlighting their capacity to 

significantly enhance the accuracy and efficiency of shoulder 

implant classification. Furthermore, the results reinforce the 

role of ViT models in advancing the applications of medical 

image analysis, suggesting a promising avenue for further 

improvements. 
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(a) (b) 

Figure 3. The accuracy and loss variation obtained during the training of the Swin-B model for 60 epochs. 

 
 
Table 3 also presents a comprehensive comparison of our 

proposed model for detecting and classifying shoulder 
implant manufacturers with previous studies conducted on 
the same dataset [4,7,9-12]. Noteworthy, prior studies have 
put forth diverse methodologies, encompassing individual 
machine learning, individual deep learning approaches, and 
hybrid strategies, showcasing the evolution of techniques in 
the field. A critical observation from this comprehensive 
review is that recent studies, leveraging both deep learning 
and machine learning approaches, consistently yield accurate 
and reliable classification results.  

Urban et al. [7] proposed CNN-based NasNet architecture 
and achieved a classification accuracy of only 80%, which 
appears to be relatively low. However, the authors attributed 
this to the variable and relatively low image resolution, as 
well as the class imbalance issues present in the dataset. 
Subsequently, it was observed that the other proposed CNN-
based models [4,9,12] were more resilient to these challenges. 
In particular, the highest cross-validation accuracy, reaching 
an impressive 97.2%, was reported in a recent study [9]. It's 
important to note that the study conducted by Sivari et al. [4] 
achieved the second-highest result at 95.07%, but it's essential 
to highlight that the dataset in the leading study [9] wasn't 
divided into test and validation sets. Instead, only 5-fold 
cross-validation results were provided, raising considerations 
about the robustness of the evaluation methodology. 
Addressing this concern, Sivari et al. [4] emphasized the 
importance of a separate validation dataset to fine-tune model 
hyperparameters and assess its generalization capabilities. 
This aligns with best practices in model evaluation.  

In our proposed method, we adhere to these principles, 
employing a comprehensive test set for unbiased result 
evaluation, and as a result, we achieved a remarkable 93.84% 
accuracy. It is also noted that the ViT-based methods 
proposed in this study are more robust than CNN models 
against datasets containing the aforementioned challenges. 

 
 

Table 3. Comparison with other studies on the same dataset 

Study Method ACC 

Urban et al. [7]  NasNet 80.0 

Sultan et al. [10] DRE-Net 85.92 

Yilmaz [9] Multi-channel CNN 97.2 

Efeoglu et al. [11] K-NN 74.0 

Karaci [12] YOLOv3 + DenseNet201 84.76 

Sivari et al. [4] DenseNet201 + LR 95.07 

This study Swin-B 93.84 

 
In the study, confusion matrices were obtained to generate 

a summary by comparing the predicted class labels by the 
classification model with the actual class labels. Figure 4 
displays the confusion matrices obtained sequentially for the 
tiny, small, base, and large models. It is observed that as the 
model complexity increases, the number of correctly 
identified examples (TP) also increases. For instance, in the 
ViT model, the number of TP was 42 in the tiny version, 
while it increased to 54 in the large version. On the other 
hand, for the Swin model, the TP count was 53 in the tiny 
version, and it rise to 57 in the large version. The Swin model 
was found to provide the highest results due to its multi-scale 
processing capabilities, which enabled more comprehensive 
feature extraction compared to other models. This is due to 
Swin model's unique self-attention mechanism and 
architectural design and its ability to effectively capture long-
range dependencies in image data. Therefore, the proposed 
model is thought to help expert pathologists who will make 
the final decision on patients. Comparing the outcomes of our 
proposed approach with other machine learning and deep 
learning studies in the literature, we observe that our results 
are not only comparable but also highly successful. 
Moreover, they signify a promising foundation for further 
improvements in the field. The adaptability and potential for 
enhancements make our proposed methodology a valuable 
addition to the existing body of knowledge in the realm of 
shoulder implant classification. 
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(a) Vit-Tiny  (b)DeiT-Tiny  (c) Swin-Tiny 

   

(d) Vit-Small  e) DeiT-Small  (f) Swin-Small 

   

(g) Vit-Base h) DeiT-Base (i) Swin-Base 

   

(j) Vit-Large (k) DeiT-Large (l) Swin-Large 

Figure 4. Confusion matrices of the ViT models (ViT: first column, DeiT: second column, and Swin: third column) obtained 

sequentially for the Tiny, Small, Base, and Large versions on 4-class shoulder implant dataset 

 

4. Conclusions 

Vision transformer (ViT) models adapt the Transformer 

architecture, originally designed for large-scale text 

processing, to the field of image processing. These models 

tend to outperform conventional approaches in image 

processing tasks, particularly when faced with large datasets 

and complex structures. A notable advantage of ViT models 

is their ability to address object relationships in a broader 

context, making them ideal for tasks requiring long-range 

dependencies to be addressed. Additionally, when pre-

trained on large-scale training datasets, ViT models exhibit 

significant improvements in feature transfer and 

generalization capabilities. In this paper, we present a novel 
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approach using ViT for shoulder implant classification from 

X-ray images. The proposed approach has shown promising 

results in automating this process by enabling efficient and 

accurate identification of shoulder implant manufacturers 

and models.  By fine-tuning pre-trained ViT models, we 

achieved superior performance than CNN-based individual 

models on a small dataset despite challenges such as variable 

image resolution and class imbalance within a small dataset. 

This automated approach will reduce the reliance on expert 

opinion and our approach will save valuable time and effort, 

enabling faster and more accurate decision making. 

However, it is worth noting that while the results are 

encouraging, the precision and recall values are still areas for 

improvement. Therefore, future research directions could 

include studying larger datasets and proposing new Vision 

Transformer-based architectures, aiming to further improve 

the precision and recall of the system.  
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