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ABSTRACT: In this study, we focus on the classification of sleep apnea syndrome from 

electroencephalogram (EEG) signals by using the spectrogram-based entropy and multilayer perceptron 

neural network (MLPNN) classifier model. For this aim, EEG signals with different apnea-hypopnea index 

(AHI) taken from Polysomnography (PSG) recordings are divided into 30 sec windows, the windowed EEG 

signals are decomposing into frequency sub-bands by using short time Fourier transform (STFT), and then 

these frequency sub-bands are normalized into the range of  [0, 1]. Next, Shannon entropy values of 

spectrograms obtained from the normalized frequency sub-bands are used as input to the MLPNN model for 

the classification of sleep apnea syndrome Finally, although success ratios of 53.4% for quadruple 

classification, 62.6% for mild sleep apnea, 60.7% for moderate sleep apnea and 87.4% for severe sleep apnea 

are achieved in the implemented classification experiments, the highest success ratio is succeeded in the 

classification of severe sleep apnea syndrome. 
 

Keywords – EEG signals, sleep apnea, Spectrogram, entropy, MLPNN. 

 

Spektrogram-Tabanlı Entropi ve MLPNN Modeli Kullanılarak EEG 

İşaretlerinden Uyku Apne Sendromu Sınıflandırması 

 
ÖZET: Bu çalışmada, spektrogram-tabanlı entropi ve çok katmanlı algılayıcı sinir ağı (MLPNN) 

sınıflandırıcı modelini kullanarak elektroansefalogram (EEG) işaretlerinden uyku apne sendromunun 

sınıflandırılmasına odaklanılmaktadır. Bu amaç için, Polisomnografi (PSG) kayıtlarından alınan farklı apne-

hipoapne indeksine (AHI) sahip EEG işaretleri 30 saniyelik pencerelere bölünmekte, pencereli EEG işaretleri 

kısa zamanlı Fourier dönüşümü (STFT) kullanılarak frekans alt bantlarına ayrıştırılmakta ve bu altbantlar [0, 

1] aralığına normalize edilmektedir. Daha sonra, normalize edilen frekans altbantlarından elde edilen 

spektrogramların Shannon entropi değerleri uyku apne sendromu sınıflandırılması için MLPNN modeline 

giriş olarak kullanılmaktadır. Sonuç olarak, gerçekleştirilen sınıflandırma deneylerinde dörtlü sınıflandırma 

için %53.4, hafif uyku apne için %62.6, orta uyku apne için %60.7 ve şiddetli uyku apne için %87.4 başarı 

oranlarına ulaşılmakla birlikte, en yüksek başarı oranı şiddetli uyku apne sendromunun sınıflandırılmasında 

elde edilmektedir. 
 

Anahtar Kelimeler- EEG işareti, Uyku apnesi, Spektrogram, Entropi, MLPNN. 

 

 

1. Introduction 

Sleep apnea syndrome is a syndrome occurring because of reducing or completely cessation 

of air flow due to repeating upper respiratory tract obstructions during sleep. This health 

problem is an important condition affecting anyone, regardless of age or gender, and 

requires treatment (Karamustafaoglu, 2014). The standard method used for the diagnosis of 

sleep apnea syndrome is Polysomnography (PSG) examination during the night. This 

examination includes a detailed analysis of the nightly sleep recording by a specialist 

doctor. Therefore, the diagnosis of apnea and similar conditions is a time-consuming 

http://dergipark.gov.tr/gbad
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process and is an evaluation open to various interpretations (Ucar et al., 2014). The focus 

of engineering studies on sleep apnea is to obtain patients' records in a meaningful way 

without distortion. For this purpose, various cues of patients are obtained by using PSG 

devices known as multi-channel data acquisition systems, recording simultaneously during 

the patient's sleep. These records are then analyzed by using various methods and used for 

the diagnosis and classification of diseases (Dogan, 2016). 

In recent years, the increase in signal processing-based studies has contributed greatly to 

the detection of the sleep apnea syndrome. Szilagyi et al. used multiple resolution wavelet 

separation to separate the electroencephalogram (EEG) signal into different spectral 

components and provided these components as input to an artificial neural network (ANN), 

achieving the success of identifying all test signals with an accuracy ratio of over 95% 

(Szilagy et al., 2002). Dr. Erdamar's study showed that the first apnea that occurred during 

sleep was successfully predicted in more than 60% of subjects with the method used to 

predict sleep apnea from PSG recordings (Erdamar, 2007). Álvarez et al. proposed a fuzzy 

logic-based solution for the detection of apneic events in apnea hypopnea syndrome and 

supported their proposed algorithm with 86% certainty and 87% validity ratios (Alvarez et 

al., 2009). Duman et al. used the decision tree algorithm to detect sleep spindles after the 

analysis of EEG signals, and successfully applied three different approaches which are the 

short time Fourier transform (STFT), the multiple signal classification (MUSIC) algorithm 

and the teager energy operator (TEO) approaches. (Duman et al., 2009). Balakrishnan and 

colleagues developed a sleep quality index to distinguish between people with normal sleep 

and obstructive sleep apnea. This index was calculated by comparing the time spent in sleep 

of healthy and sick people to the total time spent asleep (Balakrishnan et al., 2009). Acir et 

al. proposed a system with ANN to automatically recognize EEG signals. In experimental 

studies, they achieved a 94.6% specificity ratio and a 4% error ratio (Acir et al., 2004). In 

the study of Aksahin et al., they determined the strengths of the frequency bands in the EEG 

signal separately and calculated the ratios between these powers. It was found that the ratios 

of alpha and beta frequency bands were different in apnea and non-apnea periods (Aksahin 

et. Al., 2017). In another study, Yoruk conducted a spectral analysis of EEG signals 

recorded during sleep apnea and observed that entropy is an important attribute (Yoruk, 

2019). In Umut's study, he investigated the usability of EEG frequency bands in the 

diagnosis of sleep apnea and concluded that the Beta frequency was the most decisive 

among four different frequency bands (Umut, 2011). In an application carried out by 

Civaner et al., deep learning methods were used to distinguish snoring sounds in children. 

Voice recordings of children with obstructive sleep apnea syndrome (OSAS) and snoring 

were studied, and the accuracy value of a network trained by using the Adadelta algorithm 

was obtained as 91% (Civaner et al., 2018). Hafezi et al. detected sleep apnea using tracheal 

respiratory signals recorded together with PSG recordings. They extracted 25 features from 

the signals and classified them by using a hybrid deep learning algorithm consisting of a 

combination of convolutional neural networks (CNN) and long-short-term memory 

(LSTM). As a result of the classification, they achieved the accuracy of 84%, the sensitivity 

of 81% and the specificity of 87% (Hafezi et al., 2020). Abdulla et al. proposed an 

intelligent model based on multi-channel tissue color analysis to classify sleep staging. 

STFT was applied to convert EEG signals into 30-sec image form. The obtained 

spectrograms were used as input to the multi-channel information local binary pattern 

(MILBP), and classification success was achieved with 95% and 96% accuracy (Abdulla et 

al., 2023). Han et al. proposed a machine learning-based model to detect radar-based sleep 

apnea syndrome. In their study, they achieved over 90% accuracy in the classification 
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experiment after smoothing the ultra-weight band (UWB) envelope based on radar 

spectrograms through variational mode decomposition (Han et al., 2022). 

In this study, since the diagnosis of sleep apnea from all-night PSG recordings is a time-

consuming process, EEG signals that are frequently used in the literature and have a high 

success ratio were selected and this study was recommended to increase the success of the 

classification. Figure 1 shows the schematic illustration of the implementation steps of the 

model proposed in the study.  

 
Fig.1. Schematic illustration of the porposed model 

 

As seen in Figure 1, EEG signals are divided into 30-sec windows to facilitate processing 

and increase the number of samples since they are all-night recordings. Using this 

windowing process, 260 segments were obtained for each EEG signal. After each segment 

was decomposed into 4 frequency sub-bands by using STFT, each sub-band was normalized 

to the range of [0, 1]. In this way, the number of normalized sub-bands was 1040 for each 

signal. The spectrograms of the normalized sub-bands were obtained, and Shannon entropy 

values of the obtained spectrograms were applied as input to the Multilayer perceptual 

neural network (MLPNN) model for the classification of sleep apnea syndrome. In the 

evaluation of the proposed approach, the binary and quadruple classification experiments 

were implemented by using MLPNN classifier model. In other sections of the study, 

materials and methods, experimental results, discussion, and conclusion are presented in 

detail.  
 

2. Materials and Methods  
 

2.1. Dataset 
 

In this study, EEG signals taken from the open-source database of www.physionet.org 

website and containing gender, age and weight information of the patients were used. The 

number of apneas per hour during sleep is called as apnea index (AI), and the total number 

of apneas and hypopneas seen at the beginning of hour is called apnea-hypopnea index 

(AHI). While an AHI > 5 is considered as sufficient for the diagnosis of sleep apnea 

syndrome, it was understood that apnea and hypopnea are seen in healthy individuals in 

recent years, and the limit value is accepted as 20 and above (Aydin et al., 2005). The AHI 

values of signals and the sleep durations per night used in the study are given in Table 1. 
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Table 1. AHI values and sleep durations of EEG signals 

 

 
 

 
 

 

 

 

 

 

 

 

As seen in Table 1, EEG signals of healthy, mild, moderate and severe apnea classes with 

an average duration of 6-7 hours were used. These signals were recorded overnight with 

C3-A2 electrodes. Individuals with different AHI were preferred when selecting EEG 

signals. The windowing process was performed by dividing the EEG signals into 30-second 

segments. A schematic representation of the windowing process is given in Figure 2. 

 
Fig. 2. Windowing 30 sec 

 

As seen in Figure 2, EEG recordings were divided into 30-second segments after 

windowing and 260 segments were obtained for each signal. The windowed EEG signals 

are divided into 4 frequency sub-bands. Table 2 shows the frequency and amplitude values 

of the obtained frequency sub-bands.  

 

Table 2. Frequency and amplitude values of sub-bands 

 

 

 

 

 

 
 

As seen in Table 2, the number of segments of each EEG signal after the divide into sub-

bands of different amplitude and frequency range was 1040. Since EEG signals do not 

Class 

AHI 

values 

Sleep 

durations 

(hr.) 

Healthy 2 6.8 

Mild 5 6.4 

Moderate 25 7.2 

Severe 91 5.9 

 

 
      Frequency (Hz) Amplitude (μV) 

Delta 0.5-4 20-400 

Theta 4-8 5-100 

Alpha 8-13 2-10 

Beta 13-30 1-5 

Range 30< 1< 

30 sec. 
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contain information at frequencies above 30 Hz, the Gamma band does not occur. The 

obtained frequency sub-bands were normalized by using the commonly used min-max 

normalization method. Figure 3 shows the examples of normalized sub-bands. 

 
Fig. 3. The normalized sub-bands of windowed EEG signal 

 

As seen in Figure 3, the raw data is normalized linearly to the range of [0, 1] using the min-

max normalization approach.  

 

2.2. Spectrogram-based entropy  

 
Spectrogram is a graph that shows the power of a signal over time for a frequency range. It 

shows the energy variation over time and points to the frequencies where the energy of the 

signal is maximum. The signal divides into a time-domain signal which has equal length 

for generate a spectrogram. Then, all segments transform from time domain to the 

frequency domain by using fast Fourier transform (FFT) (Koseoglu et al., 2023). FFT is an 

algorithm that obtains the frequency information of a signal by computing discrete 

Fourier transform (DFT) of discrete time signals. In this method, sequence of signals 

divided into the components of different frequencies. Although this method is useful in a 

lot of areas, computing it directly from the definition takes too many times. FFT performs 

the transformation quickly by factorizing the DFT. The spectrogram of a signal is mapped 

as the power distribution of STFT and given by 

 

𝑆 (𝑡, 𝑓) =𝑋 (𝑡, 𝑓)2                                                                                                                                                                                      (1) 

 

where, 𝑋 (𝑡, 𝑓) is STFT of the weighted signal by a time window 𝜔[𝑡] that is moved in time: 

 

𝑋(𝑡, 𝑓) = ∫ 𝑥(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡
∝

−∝
                                                                                        (2) 

 

An example of EEG signal, its windowed form and spectrogram is given in Figure 4. 
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Fig. 4.  An example of EEG signals and its spectrogram 

 

Shannon entropy is a measure of the uncertainty of a random signal. An EEG signal is a 

random signal, and the spectrogram obtained from this signal also contains uncertainty. 

Therefore, the entropy values of the spectrograms were calculated by using Eq. 3, and then 

applied as input to the MLPNN model for classification experiments. 

 

𝐻(𝑖) = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖𝑖                                                                                                                         (3) 

 

where, H(i) is Shannon entropy value, and pi is the probability of value. 

 

2.3. Multilayer perceptual neural network (MLPNN) 

 

MLPNN model has three layers that are input, hidden and output layers. Input layer accepts 

incoming data from the outside world. The hidden layer produces the results by processing 

the inputs through neurons. The number of neurons in this layer is usually determined by 

trial and error. This number is important for avoiding over- or under-training. The last layer 

is the output layer generating the results and it performs the task of classification. MLPNN 

structure is designed to enable ANNs to perform complex functions and is often used in 

deep learning processes (Ubeyli, 2008). 

MLPNN model can reduce errors and learn them by using the backpropagation algorithm. 

This algorithm involves an optimization process to reduce the error ratio of the model. 

Previous studies show that MLPNN models achieved high success ratio for classification 

sleep apnea syndrome by using EEG signal, so in this study a MLPNN model is proposed. 

The proposed MLPNN model has 1 input layer, 1 hidden layer containing 10 neurons, and 

1 output layer. For training 70% of the input data, for validation %15 of the input data and 

for testing %15 of the input data is used. In the used MLPNN model, the hyperbolic tangent 

function was selected as the activation function, and the Levenberg-Marquardt 

backpropagation algorithm was selected as the training algorithm. The MLPNN classifier 

model used in the study is given in Figure 5. 
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Fig. 5. MLPNN model used for binary and quadruple classification 

 

In the study, two experiments were implemented for the evaluation of our approach. 

Experiment 1 is a binary classification (healthy-mild, healthy-moderate, healthy-severe), 

which includes the comparison of the data of each class with the healthy class, and 

Experiment 2 is a quadruple classification that is evaluated as a result of applying all classes 

to the input at the same time. 

 

3. Results and discussion 

 
In the study, EEG signals taken from PSG recordings of individuals with different AHI 

values were divided into 30-second segments. After these segments were decomposed into 

frequency sub-bands (alpha, beta, gamma and theta), the obtained sub-bands were 

normalized to the range of [0, 1]. Spectrograms were obtained for each sub-band segment, 

and the entropy values of these spectrograms were used as input to the MLPNN model. The 

classification experiments were performed in the MATLAB R2022a. Two experiments 

were implemented for the evaluation of the proposed approach. In binary classification 

experiment, the dataset of healthy individuals was compared with mild, moderate and 

severe sleep apnea syndrome dataset one by one. In quadruple classification experiment, 

the dataset of all classes was used as input to the MLPNN model collectively. In both cases, 

70% of the dataset was used for training, 15% for validation, and 15% for testing. The used 

model has a structure that includes 1 input layer, 1 hidden layer with 10 neurons, and 1 

output layer. 

The classification success of the proposed model was evaluated by using sensitivity, 

specificity, and total correct classification (TCC) ratios defined as in Eq. 4,5 and 6. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒𝑛𝑠) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%                                                                                     (4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝𝑒𝑐) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100%                                                                                     (5) 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 (𝑇𝐶𝐶) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100%                                (6) 

 

 

TP: true positive, number of actual positive and predicted as positive 

TN: true negative, number of actual negative and predicted as negative 

FP: false positive, number of actual negative and predicted as positive 

FN: false negative, number of actual positive and predicted as negative 
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TCC: total correct classification ratio, ratio of correct decisions to all cases 

 

Receiver processing characteristic (ROC) curve shows all possible breakpoints and 

provides information about each breakpoint. The larger the area under the curve, the higher 

the sensitivity of the test. The closer the area under the curve is to 1, the better the 

classification performance of the model. The confusion matrix and total correct 

classification ratios of the binary classification performed in the study are given in Table 3.  

 

Table 3. Confusion matrices of the experiment, and Sens, Spec and TCC ratios 

 
(a) Mild sleep apnea binary classification 

 

 

 
 

 

(b) Moderate sleep apnea binary classification 
 

                          
 

 

 

 

 

(c) Severe sleep apnea binary classification 

 

 
 

 

 

 
As can be seen in Table 3, the success ratios of mild and moderate apnea classification were 

lower than severe apnea. If the AHI values are close to each other, it can reduce the ratio of 

correct estimation of the classes. TCC ratios were 62.6%, 60.7% and 87.4% for mild, 

moderate and severe sleep apneas, respectively.  Sensitivity is lower than specificity in the 

classification of moderate and severe sleep apnea. The opposite is the case in the mild sleep 

apnea classification. High AHI value caused significant differences in EEG signal in apnea 

and hypopnea, and thus increased the success ratio. ROC curves of the classification 

experiments are given in Figure 6.  

 

 Healthy Mild Sens (%) Spec (%) TCC (%) 

Healthy 619 357 59,5 63,4 
62,6 

Mild 421 683 65,7 61,9 

 Healthy Moderate Sens (%) Spec (%) TCC (%) 

Healthy 731 509 70,3 59 
60,7 

Moderate 309 531 51,1 63,2 

 Healthy Severe Sens (%) Spec (%) TCC (%) 

Healthy 632 154 89,6 85,8 
87,4 

Severe 108 886 85,2 89,1 
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Fig. 6. Binary classification ROC curves 

 

As seen in Figure 6, the classification experiments are nearly the same with mild and 

moderate sleep apnea classification. The area under the ROC curve is closer to 1 in the 

severe apnea classification. This means that the success ratio is higher than others and high 

sensitivity with low false positive ratio. 

In the second experiment of the study, the entropy values of all classes were applied as input 

to a four-output MLPNN model, and their classification ratios were evaluated. The results 

of this classification experiment are given in Table 4.  

 Table 4. Quadruple classification accuracy ratios 

  

 

 

 

 Mild Moderate Severe Healthy Sens. (%) Spec. (%) TCC (%) 

Mild 566 260 0 349 54,4 48,2 

53,4 
Moderate 81 376 0 189 36,2 58,2 

Severe 76 76 884 106 85 77,4 

Healthy 317 328 156 396 38,1 33,1 
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As seen in Table 4, the TCC ratio of quadruple classification was 53.4%. Since the dataset 

of the healthy class and the classes with mild and moderate apnea syndrome were close to 

each other, the success of the quadruple classification was lower than the binary 

classification. According to the confusion matrices, no data with mild and moderate apnea 

were assigned to the severe class, while 76 data from both classes were assigned to the 

severe class. TP and FP values of healthy data were close to each other compared to other 

classes. This situation also reduced its originality and selectivity. In severe apnea, it has a 

TP value of 884 with 85% selectivity. The ROC curve plotted according to the results in 

Table 4 is given in Figure 7. 

 
Fig. 7. Quadruple classification ROC curves 

 

As seen in Figure 7, the ratio of classification of individuals with severe sleep apnea is 

higher than others. Lower false positive ratio optimizes the ROC curve. The areas under the 

ROC curve demonstrates that the severe sleep apnea classifier has higher specificity and 

sensitivity. This is important in terms of developing a method that can detect the disease 

while taking EEG recordings without the need for individuals with sleep apnea to stay in 

sleep laboratories overnight. In addition, it may be possible to further refine the model by 

collecting more data. This study provides a new way to classify sleep apnea syndrome and 

allows for further research in the future. 

 

4. Conclusions 

 
In this study, we proposed the spectrogram-based entropy approach for the classification of 

sleep apnea syndrome from EEG signals by using MLPNN classifier model. Two 

experiments were implemented for the evaluation of the proposed approach. In binary 

classification experiment, the dataset of healthy individuals was compared with mild, 

moderate and severe sleep apnea syndrome dataset one by one. In quadruple classification 

experiment, the dataset of all classes was used as input into the MLPNN model. High AHI 

value caused significant differences in EEG signal in apnea and hypopnea, and thus 

increased the success ratio. As a result, due to its high achievement, the proposed model 

can be used as an aid tool in the classification of sleep apnea syndrome. As another result 

of this study, the fact that the spectrogram-based entropy approach has not been used before 

in sleep apnea syndrome classification has led to the idea that it can be used as a new model 

in biomedical studies.  
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