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Abstract: Children with ADHD may experience challenges such as attention deficits, 

behavioral problems, educational problems, and low self-confidence. This study summarizes 

research aiming to evaluate the diagnosis of attention deficit hyperactivity disorder (ADHD) 

with electroencephalography (EEG) signals. The research used EEG data from 30 children 

diagnosed with ADHD and 30 healthy control groups. EEG data was first processed for noise 

reduction purposes and then classified using deep learning models such as ConvMixer, 

ResNet50, and ResNet18. The findings show that ConvMixer demonstrates high accuracy in 

classification. while requiring low computational resources. Additionally, the effects of 

different channels on the usability of EEG signals in the diagnosis of ADHD were examined, 

and the T8 channel was found to be particularly effective. In conclusion, the study emphasizes 

the effectiveness of lightweight models and underscores the significance of specific EEG 

channels in diagnosing ADHD using EEG signals. 

 

 

Convmixer ve SDD Kullanılarak DEHB Hastalığının EEG Sinyalleri ile Otomatik Olarak 

Tespit Edilmesi 
 

 

Anahtar 
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Derin Öğrenme, 

DEHB,  

Sürekli dalgacık 

dönüşümü 

Öz: DEHB, çocuklarda dikkat eksikliği, davranış problemleri, eğitimle ilgili sorunlar ve düşük 

özgüven gibi problemler oluşturabilir. Bu çalışma, Dikkat Eksikliği Hiperaktivite Bozukluğu 

(DEHB) teşhisini elektroensefalografi (EEG) sinyalleriyle değerlendirmeyi hedefleyen bir 

araştırmayı özetlemektedir. Araştırma, 30 DEHB tanısı almış çocuk ve 30 sağlıklı kontrol 

grubunun EEG verilerini kullanmıştır. EEG verileri öncelikle gürültü azaltma amacıyla işlenmiş 

ve ardından ConvMixer, ResNet50 ve ResNet18 gibi derin öğrenme modelleri kullanılarak 

sınıflandırılmıştır. Bulgular, ConvMixer'in düşük hesaplama kaynaklarına ihtiyaç duyarak 

yüksek sınıflandırma başarısı elde ettiğini göstermektedir. Ayrıca, EEG sinyallerinin DEHB 

teşhisinde kullanılabilirliği konusunda farklı kanalların etkileri incelenmiş ve T8 kanalının 

özellikle etkili olduğu tespit edilmiştir. Bu çalışma, EEG tabanlı DEHB teşhisi için daha hafif 

modellerin kullanılabilirliğini ve EEG kanallarının önemini vurgulamaktadır. 
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1. INTRODUCTION 

 

ADHD is a neurodevelopmental disorder that typically 

manifests in childhood, affecting at least 5 out of every 

100 children today [1]. ADHD can cause problems in 

children such as attention deficits, behavioral problems, 

educational problems, and low self-confidence. Early 

diagnosis of ADHD helps to create a treatment plan 

appropriate to children's needs, improve school 

performance, and support social and emotional 

development. ADHD symptoms cause some changes in 

brain activity. For this reason, an electroencephalogram 

(EEG) may reveal some findings that show symptoms of 

ADHD. Since deep learning methods can automatically 

analyze EEG data, they can be used as an effective tool 

to distinguish between individuals with ADHD and 

healthy individuals. 

 

Numerous studies have been conducted in the literature 

using artificial intelligence techniques to classify people 

with ADHD and healthy individuals. Tosun [2] 

investigated how different frequency light stimuli 

affected the diagnosis of ADHD. This data set was 

obtained by the researcher using the power spectral 

densities and spectral entropy values that were generated 

from the EEGs of the patients. The researcher created his 

own data set. The researcher used support vector 

machines (SVM) and long-short-term memory (LSTM) 

as classifiers. With the eyes closed, the results showed 

88.88% classification accuracy in the Fp1 and F7 

channels and 92.15% at rest. 

 

Five Azure Kinect units and depth sensors were used to 

gather the skeletal data of children as they played a game 

that Lee et al. [3] designed for the purpose of screening 

and diagnosing ADHD in children. The child is required 

to follow a robot that follows a predetermined path in a 

game meant to screen diagnoses. The skeletal data 

utilized in this study were separated into two categories: 

"play" data, which was collected while the child was 

playing, and "waiting" data, which was collected when 

the child was waiting while the robot guided. The RNN 

series, bidirectional layer, and weighted cross-entropy 

loss function of the GRU, RNN, and LSTM algorithms 

were used to classify the resultant data. Out of all of 

these techniques, the LSTM algorithm with a weighted 

cross-entropy loss function and a bidirectional layer 

achieved 97.82% classification accuracy. 

 

Two novel deep learning techniques for the classification 

of ADHD based on functional magnetic resonance 

imaging (fMRI) were presented by Wang et al. [4]. 

Convolutional neural networks and independent 

component analysis were employed in the first. The 

correlation autoencoder method was applied in the 

second one. Both approaches outperformed traditional 

approaches in terms of performance. 

 

The gradient-weighted class activation mapping 

technique was used by Chen et al. [5] to visualize EEG 

signals in their investigation. 50 children with attention 

deficit hyperactivity disorder were studied; 9 girls and 41 

boys provided EEG signals for the data collection. From 

spatial frequency anomalies in the EEGs, they were able 

to obtain the power spectral density. The researchers' 

classification accuracy was 90.29% when they used this 

feature as the convolutional neural network's (CNN) 

input. 

 

Lee et al. [6] used deep learning and skeletal data to 

classify ADHD in children. Data from engaging games 

were accurately classified into three groups: ADHD, 

ADHD-RISK, and Normal. 98.15% classification 

accuracy was attained with the use of bi-directional 

LSTM and channel attention model. A major 

contribution to the differentiation of the ADHD-RISK 

class was made by the study. 

 

Saurabh et al. utilized functional magnetic resonance 

imaging (fMRI) data during resting-state to diagnose 

ADHD. They classified ADHD using voxel data in RSN 

active regions, utilizing a modified BLSTM model [7]. 

For classification accuracy, the model scored 87.50%. 

An evaluation was conducted in comparison to 

alternative approaches. 

 

Tang et al.[8] used the ADHD-200 database as a data set. 

The suggested network architecture consisted of a 

modified autocoding network and a binary hypothesis 

testing framework. The study employed binary 

hypothesis testing as a means of handling incomplete 

data, and during feature selection, the brain functional 

connections from the test and training data sets were 

combined. The purpose of the modified autocoding 

network was to capture more useful features. The 

ADHD-200 database was used for experiments, and the 

method's average accuracy was 99.6%. 

 

EEG signals were used as the data set by Ahmadi [9], 

who proposed a computer-aided diagnosis system that 

can accurately diagnose ADHD. Deep convolutional 

neural network (CNN) architecture is used in the 

suggested technique. With the combination of β1, β2, 

and γ bands, the highest classification accuracy was 

obtained. It was discovered that the success rate attained 

was 99.46%. In this study, deep learning and an EEG 

signal were used to classify children with ADHD and 

healthy children. 

 

A total of 121 children and 19 channels, aged 7 to 12, 

comprised 61 children with ADHD and 60 healthy 

children [10] were the data set utilized by 

Maniruzzzaman et al. [11]. In the study by et al., key 

features were chosen using the LASSO logistic 

regression model after optimal channels were chosen as 

the network architecture using two different techniques 

based on SVM and t-test. Consequently, the following 

six machine learning-based classifiers were employed: 

logistic regression, multilayer perceptron, k-nearest 

neighbor, random forest, and Gaussian process 

classification (GPC). By using these techniques, it was 

possible to identify children with ADHD from healthy 

children with an accuracy rate of 97.53%. 

 

Park et al. [12] objectively detected physical aggression 

in children by utilizing machine learning and physical 
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activity data from wearable sensors. An activity monitor 

worn three times a week by 39 individuals with and 

without ADHD served as the data set for the study 

conducted by. The random forest method was used to 

perform machine learning, and patterns describing times 

of physical aggression were examined. With an 89.3% 

area under the curve, 82.4% F1 score, 85.0% recall, 

82.2% sensitivity, and 82.0% accuracy, the model was 

able to distinguish between episodes of physical 

aggression. The sensor's vector magnitude feature was 

crucial to the model's operation. This research may offer 

a useful method for remotely identifying and controlling 

child aggression. 

 

Ghasemi et al. used machine learning to improve the 

accuracy of ADHD diagnosis. Event-Related Potentials 

(ERP) data from ADHD patients and healthy control 

groups were used as the data set in the study by [13]. 

Features for frequency bands were calculated by 

processing ERP signals. Seven distinct machine learning 

algorithms were used for the classification process. 

Selected features have been combined with care. Deep 

Learning, Logistic Regression, and Generalized Linear 

Modeling techniques produced the best classification 

results. The AUC value is greater than 0.999 and the 

average accuracy rate is 99.85%. The ability to 

differentiate ADHD from the control group was better 

demonstrated by high and low frequencies (Beta, Delta). 

A machine learning expert system that reduces ADHD 

misdiagnosis and aids in treatment efficacy evaluation 

was created in this study. 

 

Mikolas [14] trained a linear SVM classifier with 

anonymized data from clinical records to identify 

participants with ADHD from a population presenting a 

variety of psychiatric conditions. With 66.1% accuracy, 

children and adolescents diagnosed with ADHD were 

distinguished from those without the disorder. SVM with 

single features produced accuracies with slightly 

different and overlapping standard deviations. Their 

developed method, which combined 19 features in an 

automatic feature selection process, produced the best 

results. 

 

In this study, a deep learning-based method was 

developed to automatically diagnose ADHD from EEG 

signals. The open-access data set [10], created with the 

participation of boys and girls between the ages of 7 and 

12, consists of the EEG signals of 61 children with 

ADHD and 60 healthy children. EEG signals consisting 

of 19 channels were divided into segments by a multi-

part signal segmentation procedure, with each channel 

becoming a separate vector. Each EEG signal is divided 

into 4-second segments. A 50Hz notch filter was applied 

to reduce noise and fluctuation in each EEG segment. 

Using a continuous wavelet transform, each EEG 

segment was converted into an image in the frequency-

time domain. Each of the 19 channels is classified 

separately into two classes: ADHD and healthy. In Part 

2, the dataset and materials used will be given. In the 

third part, the findings will be mentioned, and in the 

fourth part, discussion and conclusions will be given. 

 

2. MATERIAL AND METHOD 

 

2.1. Dataset 

 

In this research, the open-access data set obtained from 

[10] was used. This data set includes 30 children 

diagnosed with Attention Deficit Hyperactivity Disorder 

(ADHD) and 30 healthy controls for whom an 

experienced child and adolescent psychiatrist confirmed 

this diagnosis according to DSM-IV criteria. The group 

diagnosed with ADHD consists of 22 boys and 8 girls, 

and their average age is 9.62 ± 1.75 years. The healthy 

control group consists of 25 boys and 5 girls, and their 

average age is 9.85 ± 1.77 years. Among the children 

diagnosed with ADHD, 25 had combination subtypes, 3 

had attention deficit subtypes, and 2 had hyperactivity 

subtypes. 

 

Children diagnosed with ADHD were referred to the 

child and adolescent psychiatry clinic at Roozbeh 

Hospital, and these children had never used medication 

before. The control group was selected from two 

different sources: the first was selected from a primary 

school with 25 male students; the other 5 female students 

were selected from an all-female primary school. 

Children in the control group were evaluated by a child 

and adolescent psychiatrist to determine possible 

disorders. As a result of this evaluation, it was 

determined that none of the children in the control group 

had psychiatric problems. 

 

Exclusion criteria for children diagnosed with ADHD 

and healthy controls included history of significant 

neurological disorder, brain injury (including epilepsy), 

history of serious medical illness, learning or verbal 

disability, other psychiatric disorders, and use of 

benzodiazepine and barbiturate medications. 

Additionally, after the Raven Progressive Matrices Test 

was administered to children, participants who showed 

above-average success were included in the study. 

 

2.2. Preprocessing 

 

EEG signals in the data set were recorded according to 

the 10-20 standard with a sampling frequency of 128 Hz 

and were recorded with 19 channels (Fz, Cz, Pz, C3, T3, 

C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4, T5, T6, O1, 

O2). Each channel was converted into a separate signal 

vector. 19 signal vectors were obtained for each sample. 

Then, a 50 Hz Notch Filter was applied to these signal 

vectors to minimize noise. Then, each signal vector was 

divided into 4-second segments without overlapping. For 

each channel, a total of 79287 segments were obtained, 

including 2330 ADHD segments and 1843 healthy 

segments. The pre-processing procedure performed is 

given in Figure 1. 
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Figure 1. Preprocessing procedure performed 
 

2.3. Continuous Wavelet Transform 

 

Each of the 4-second segments obtained in the pre-

processing section was converted into heat map images 

in the frequency-time domain using the continuous 

wavelet transform (CWT). The resulting images were set 

to 224x224, which is the input size of the deep learning 

networks to be used. CWT is a mathematical process or 

a spectral analysis method applied to analyze a signal in 

time-frequency space [15]. EEG signals examine 

changes in brain activity over time. Frequency 

components of the EEG are also of high importance. 

Because oscillations at different frequency levels 

represent different brain activities [16] . CWT analyzes 

EEG signals in the time-frequency domain and shows 

which frequency components are effective in which time 

interval. The basic equation of CWT is as follows: 

 

𝐶𝑊𝑇(𝑎, 𝑏) = ∫ 𝑥(𝑡)
∞

−∞

× 𝜓∗ (
𝑡 − 𝑏

𝑎
) 𝑑𝑡 (1) 

 

Here a is the scale factor and determines the time scale 

of the signal. b is the position parameter and determines 

the time position of the signal. The result of CWT(a,b) is 

indexed by time (a) and scale (b). This represents the 

analysis of the signal at different time scales. x(t) 

represents the signal under consideration. 𝜓∗ is a wavelet 

function and is used to measure the frequency 

components and time positions of the signal. By 

performing the CWT transformation, wavelet 

coefficients were obtained as follows: 

 

𝐶𝑂𝐸𝐹𝑆 = 𝐶𝑊𝑇(𝑥(𝑡), 𝑓𝑠) (2) 
 

Here, 𝐶𝑂𝐸𝐹𝑆  are the wavelet coefficients.  𝑓𝑠  is the 

sampling frequency of the EEG device. Since the 

sampling frequency is given as 128 Hz in the data set, 

𝑓𝑠was chosen as 128 Hz. 

 

The obtained wavelet coefficients were multiplied by a 

scalar, their logarithm was taken, and then their absolute 

value was taken. 

 

𝑖𝑚𝑔 = 𝑙𝑜𝑔|𝐶𝑂𝐸𝐹𝑆.∗ 𝐶𝑂𝐸𝐹𝑆| (3) 
 

Here img is the resulting image matrix. This matrix was 

visualized to scale, and a heat map image (HMI) was 

obtained. For each channel, a total of 79287 HMI was 

obtained, including 2330 ADHD HMI and 1843 healthy 

HMI. The stages of obtaining an HMI and an example of 

the obtained HMI are given in Figure 2. 

 

 
Figure 2. Stages of obtaining HMI 

 

2.4. Classification Method 

 

The resulting 224x224 size images were classified using 

Convolutional Neural Network (CNN). The flow 

diagram of the classification is given in Figure 3. 
 

 
Figure 3. Flow diagram of the applied system 

 

ConvMixer, ResNet50 and ResNet18 were used as 

classifiers. 70% of the data is reserved for training and 

30% for testing. Each channel is classified separately. 

 

2.4.1. ConvMixer 

 

ConvMixer[17] is a deep learning model very similar to 

MLP-Mixer[18]. In MLP-Mixer, a multilayer perceptron 

is used to process data in the spatial dimension and mix 

the channel size, while in ConvMixer, depth convolution 

called DepthWise is used for spatial mixing. This 

structure first involves a patch placement layer and is 

then built by multiple iterations of a simple fully 

convolutional block. Patch embeddings defined by p and 

embedding size h can be implemented as a convolution 

operation with input channels 𝑐𝑖𝑛 , output channels h, 

kernel size p and step size p: 

 
𝑧0 = 𝐵𝑁(𝜎{𝑐𝑜𝑛𝑣𝑐𝑖𝑛

→ (𝑋, 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑝, 𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑧𝑒 = 𝑝)}) (4) 

ConvMixer combines several components to process 

data: 

 

Patch Embedding Layer: Input data is processed with 

this layer. In this layer, the data is divided into small 

patch regions and each patch region is converted into a 

vector by embedding. The stage of converting the input 
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data into lower-dimensional vector representatives is 

achieved with this layer. 

 

Convolutional Block: ConvMixer consists of fully 

connected layers repeated consecutively. These blocks 

use the basic convolution operation. Each block consists 

of two steps. The first of these steps is depth 

convolution, where a convolution is applied where the 

number of groups is equal to the number of channels. It 

changes the overall structure of the feature map by 

comparing channel-level information. The second step is 

the point convolution step. This step allows further 

processing of pixel and position features. 

 

Normalization and Activation: Normalization and 

activation are applied after each convolution. In this 

way, the model is ensured to stabilize education and 

learning. 

 

Global Pooling: After a series of repetitions of 

ConvMixer blocks, global pooling is applied to create a 

general summary of the entire feature map, and a feature 

vector is obtained as a result of this process. 

 

Classification Layer: In the final stage, this feature 

vector is passed to a softmax classification layer and 

classification of objects or patterns is performed through 

this layer. 

 

The network architecture used is given in Figure 4. 

 

 
Figure 4. ConvMixer Network Architecture 

 

2.4.2. ResNet50 

 

ResNet [19], developed by Kaiming He and other 

researchers in 2015, is a family of network architectures. 

The main feature of ResNet is the use of so-called "skip 

connections" or "shortcut connections". These 

connections allow the network to be made deeper, 

making it easier to train the network and more resistant 

to overfitting. In this study, ResNet models were also 

used to classify ADHD and healthy and compare them 

with the ConvMixer architecture. 

 

Input Layer: ResNet-50 model takes an image of 

224x224 pixels as input. This image is usually 

represented as a tensor consisting of three-color channels 

(RGB). 

 

Convolution Layers: ResNet-50 contains several 

convolution layers. Convolution layers are used to 

capture and extract different features of the image. Each 

convolution layer implements a convolution operation 

that comes with weight matrices (W) and bias terms (b). 

The mathematical expression of this process is as 

follows: 

 

𝐻𝑖 = 𝑓(𝑊𝑖 ∗ 𝐻𝑖−1 + 𝑏𝑖) (5) 
 

Here 𝐻𝑖  represents the output of the layer, 𝑊𝑖 represents 

the convolution kernel, 𝐻𝑖−1 represents the output of the 

previous layer, 𝑏𝑖  represents the bias term and 𝑓 

represents the activation function. 

 

𝑌 = 𝑓(𝑊𝑋 + 𝑏) (6) 
 

Here Y is the classification result; W, weight matrix; X, 

feature vector; b is the bias term and f is the activation 

represents the function. 

 

Skip Connections: ResNet-50 uses connections called 

"skip connections" or "redundant connections" that 

specifically help train deeper networks. These 

connections add the output of one layer to the input of 

another layer, making the flow of information smoother 

and allowing the network to become deeper. 

 

2.4.3. ResNet18 

 

Basically, ResNet18 has a similar structure to ResNet50. 

ResNet18 consists of 18 layers in total, while ResNet50 

consists of 50 layers. For this reason, the depth of 

ResNet50 is greater than ResNet18. This will directly 

increase the number of parameters of ResNet50 

compared to ResNet18. In terms of generalization 

ability, ResNet50 can generalize better. For this reason, 

it will work better than ResNet18 in complex situations. 

Being a model with a higher number of parameters 

indicates that ResNet50 requires more computational 

power and memory. In short, while ResNet50 can give 

better results in larger and more complex data sets, 

ResNet18 can be described as a simpler model that 

achieves better results with less data. In the study, 

classification was performed with both ResNet18 and 

ResNet50 and these two models were compared in terms 

of classification success. 

 

Deep learning techniques were applied in a MATLAB 

environment to automate the classification of Attention 

Deficit Hyperactivity Disorder (ADHD) using EEG 

signals. The EEG data, collected from 121 children 60 

diagnosed with ADHD and 61 healthy controls were 

processed into individual vectors for each channel to 

facilitate detailed analysis. A 50 Hz Notch filter was 

applied to clean each signal from noise. Each vector, 

cleared of noise after the Notch filter, was divided into 

4-second segments. 4173 segments were obtained for 

each channel, 2330 of which were ADHD and 1843 were 

healthy. The resulting 4173 segments were converted 

into heat map images in the time-frequency domain 

using the SDD method. The resulting 4173 images were 

set to 224x224 size. Of these 4173 images, 80% were 

randomly divided as training data and 20% as test data. 

For each channel, 3378 training and 835 test images 

were obtained. A total of 4173*19=79287 images were 

obtained. In total, 64182 images were allocated to 

training and 15105 images were allocated to testing. 
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Some parameters of pre-trained models are given in 

Table 1. 

 

3. RESULTS OF EXPERIMENTS 

 

Analyzes were carried out in MATLAB environment to 

automatically classify ADHD disease with deep learning 

using EEG signals. EEG signals received from a total of 

121 children, 60 of whom had ADHD and 61 of whom 

were healthy, were turned into a separate vector for each 

channel. A 50 Hz Notch filter was applied to clean each 

signal from noise. Each vector, cleared of noise after the 

Notch filter, was divided into 4-second segments. 4173 

segments were obtained for each channel, 2330 of which 

were ADHD and 1843 were healthy. The resulting 4173 

segments were converted into heat map images in the 

time-frequency domain using the SDD method. The 

resulting 4173 images were set to 224x224 size. Of these 

4173 images, 80% were randomly divided as training 

data and 20% as test data. For each channel, 3378 

training and 835 test images were obtained. A total of 

4173*19=79287 images were obtained. In total, 64182 

images were allocated to training and 15105 images 

were allocated to testing. Some par ameters of pre-

trained models are given in Table 1. 

 
Table 1 Parameters for Pre-Trained Models 

Model 

Parameters 
ConvMixer ResNet50 ResNet18 

Input Image 

Size 
224x224x3 224x224x3 224x224x3 

Mini-batch 

size 
64 64 64 

Number of 

epochs 
10 10 10 

Initial 

Learning 

rate 

0.001 0.001 0.001 

Optimizer Adam Adam Adam 

Activation 

Function 
Softmax Softmax Softmax 

Verification 

Frequency 
3 3 3 

Depth 5 - - 

Patch Size 9 - - 

 

An example classification process is given in Figure 5. 

 
Figure 1 An example for training process 

 

The accuracy rate and average accuracy rate obtained for 

each channel using Convmixer in detecting ADHD from 

EEG signals are as in Table 2. 

 

Table 2 Achieved Classification Accuracy Rates 

 ConvMixer ResNet50 ResNet18 Mean 

Fp1 73.16 75.33 72.18 73.5567 

Fp2 74.37 73.89 68.82 72.3600 

F3 70.9 75.81 76.02 74.2433 

F4 70.3 68.74 71.46 70.1667 

C3 72.22 77.25 72.18 73.8833 

C4 70.18 68.86 69.3 69,44 

P3 76.29 76.29 76.26 76.28 

P4 65.39 67.19 65.71 66.0967 

O1 71.86 71.5 72.66 72.0067 

O2 65.15 66.23 67.63 66.3367 

F7 73.53 70.9 73.86 72.7633 

F8 73.65 73.53 76.74 74.64 

T8 75.81 78.92 77.7 77.4767 

P7 70.9 74.01 74.82 73.2433 

P8 70.9 71.98 75.3 72.7267 

Fz 78.68 63.47 64.51 68.8867 

Cz 74.13 73.65 76.98 74.92 

Pz 77.13 78.8 69.78 75.2367 

Mean 72,475 72.575 72.383  

 

4. DISCUSSION AND CONCLUSION 

 

Table 2 presents the classification results achieved for 

each channel using pre-trained ResNet and ConvMixer 

architectures. Classification performance varies for each 

EEG channel. ConvMixer achieved the highest 

classification accuracy among all channels, with 78.68% 

for the Fz channel, while ResNet50 attained the highest 

accuracy at 78.92% for the T8 channel. ResNet18 

achieved the highest classification accuracy among the 

channels, reaching 76.74% for the F8 channel. Upon 

examining the classification success obtained by 

averaging results across 19 channels, ResNet50 

exhibited the highest accuracy at 72.575%, followed 

closely by ConvMixer with 72.475%. ResNet18 gave the 

lowest classification success with 72.383%. However, all 

three classifiers gave an average classification accuracy 

of around 72%. 

 

When their classification success was evaluated, almost 

three classifiers gave approximately the same 

classification success. However, when ResNet and 

ConvMixer are compared, ResNet has many more 

parameters than ConvMixer architectures. This means 

that ResNet requires more computational resources than 

Convmixer. ConvMixer is a lighter model and consumes 

less resources. Again, ResNet uses skip connections and 

cut connections, while ConvMixer focuses on planar 

comparison of features. In this study, it was revealed that 

ConvMixer provides features almost as good as 

ResNet50 with less workload and cost. In addition, the 

fact that it gives better results than ResNet18 shows that 

ConvMixer can give better results at some points, even 

though it has lower depth compared to ResNet 

architectures. 

 

Another point of focus was which of the 19 channels 

arranged according to the 10-20 system while recording 

EEG signals could be more effective in recognizing 

ADHD with EEG. As stated above, ConvMixer gave 

high classification success in the Fz probe, ResNet50 

gave high classification success in the T8 probe, and 

ResNet18 gave high classification success in the F8 

probe. In this way, it is difficult to deduce which channel 
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is better for ADHD detection with EEG signal. For this 

reason, it was estimated which probe would give the best 

results for automatic ADHD detection by taking the 

average of the 3 classifiers. As can be seen, the T8 probe 

was the probe that gave the highest classification success 

with an average of 77.4767%. This means that the region 

of the brain where the T8 probe is inserted may be more 

effective in diagnosing ADHD, and this may be a topic 

of discussion that may generate new ideas for expert 

neurologists on this subject. 

 

The biggest disadvantage of this study is its 

classification accuracy, which is not high. This may be 

due to the complex and noisy structure of EEG signals. 
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