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Abstract: Microalgae are among the important microorganisms for a sustainable world as a source of renewable energy. In this study, three new microalgae 
were isolated from different regions of Türkiye and identified by molecular techniques. First isolate was Chlorella sorokiniana Shihira and Krauss, 1965 which 
was isolated from Dim River, second was Pseudochloris wilhelmii Somogyi et al., 2013 from Tokat and the third was Tetradesmus obliquus (Turpin) Wynne 
and Hallan, 2016 from Tunca River. The maximum biomass of C. sorokiniana was 1.02 g/L, 1.86 g/L for P. wilhelmii and 0.80 g/L for T. obliquus. The chlorophyll 
(a+b) concentrations were 0.146, 0.278 and 0.181 µg/mL for C. sorokiniana, P. wilhelmii and T. obliquus, respectively. The biotechnological utilization 
capacities of new isolates were revealed with the support of literature. 
Keywords: Biotechnology, Chlorella sorokiniana, isolation, chlorophyll, Pseudochloris wilhelmii, Tetradesmus obliquus 

Öz: Mikroalgler yenilenebilir enerji kaynağı olarak sürdürülebilir bir dünya için önemli mikroorganizmalar arasında yer almaktadır. Bu çalışmada Türkiye'nin 
farklı bölgelerinden üç yeni mikroalg izole edilmiş ve moleküler tekniklerle tanımlanmıştır. İlk izolat Dim Nehri'nden izole edilen Chlorella sorokiniana Shihira 
ve Krauss, 1965, ikinci izolat Tokat'tan izole edilen  Pseudochloris wilhelmii Somogyi ve ark., 2013 ve üçüncü izolat ise Tunca Nehri'nden izole edilen 
Tetradesmus obliquus (Turpin) Wynne ve Hallan, 2016'dır. C. sorokiniana'nın maksimum biyokütlesi 1,02 g/L, P. wilhelmii için 1,86 g/L ve T. obliquus için 0,80 
g/L olarak bulunmuştur. Klorofil (a+b) konsantrasyonları C. sorokiniana, P. wilhelmii ve T. obliquus için sırasıyla 0,146, 0,278 ve 0,181 µg/mL olarak 
bulunmuştur. Bu çalışma kapsamında Türkiye’den izole edilen mikroalg türlerinin biyoteknolojik kullanım kapasiteleri literatür desteğiyle ortaya çıkarılmıştır. 
Anahtar kelimeler: Biyoteknoloji, Chlorella sorokiniana, izolasyon, klorofil, Pseudochloris wilhelmii, Tetradesmus obliquus 

INTRODUCTION 
The rapid increase in the use of existing energy sources 

has led researchers to search for renewable energy sources. 
Microalgae is one of the biomasses used as a renewable 
energy source. Microalgae are living organisms with 
biotechnological potential. As a general definition, the term 
"microalgae" includes both eukaryotic algae such as 
Chlorophyta, Rhodophyta, Charophyta and the only 
prokaryotic group Cyanobacteria (Barsanti and Gualtieri, 
2014). It is known that cyanobacteria, one of the microalgae, 
formed about 3 billion years ago and filled the earth with O2 
with their photosynthesis ability. In this way, life forms on earth 
were formed and diversified. Microalgae are at the forefront of 
renewable energy studies (Mutaf et al., 2023; Özçiçek et al., 
2017). In addition, microalgae are used in food additive 
production (Jacob-Lopes et al., 2019), wastewater treatment 
(Taştan et al., 2012a), air pollution prevention (Taştan et al., 
2012b), energy production (Perendeci et al., 2019) and many 
other fields.  

The extensive use of microalgae in different industries 
depends on their growth in both fresh and saline waters, ease 
and speed of cultivation, and their ability to utilize wastewater 

and different substrates (Coronado-Reyes et al., 2022; Lu et 
al., 2015). The increase in carbon dioxide (CO2) emissions is 
one of the consequences of anthropogenic activities that 
contribute to increased global warming. Microalgae are 
promising species for preventing the increase in CO2 
emissions (Taştan et al., 2016) and the utilization of microalgal 
biomass directly or by converting it into related by-products 
provides added value. 

Compared to plants, microalgae have the advantages of 
growing much faster and requiring less land (Schenk et al., 
2008). For example, while the land required for palm oil 
production is 2 m2 year/kg biodiesel, the land requirement for 
the production of low-lipid microalgae is estimated to be 0.2 m2 
year/kg biodiesel (Mata et al., 2010). Microalgal biofuels are 
considered third-generation fuels. Microalgae also have the 
ability to reduce increasing greenhouse gas emissions and in 
this context, they fix 40% of global carbon emissions. It is also 
known that some microalgae species contain 70% lipid (Chu, 
2017). Biodiesel from microalgae biomass can reduce 78% of 
CO2 emissions on a life-cycle basis compared to conventional 
diesel fuels (Durrett et al., 2008; Sawayama et al., 1995). 
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Unfortunately, despite the increase in biodiesel production from 
microalgae, there is a cost barrier to the commercial use of 
microalgae in biofuel production, and therefore it has not 
become practical and cannot replace fossil fuels (Babu et al., 
2022; Ghosh et al., 2016). 

Nowadays, when the conservation of biodiversity has 
become even more important due to the increasing loss of 
species in recent years, the main objectives of our study are to 
isolate different types of microalgae from different freshwater 
sources of Türkiye, to determine the species at morphological 
and molecular levels, to calculate and compare the bioenergy 

of these isolates by kinetic methods and to determine in which 
areas they are used. 

MATERIALS AND METHODS 
Freshwater sampling 
Freshwater samples were taken from 3 different regions of 

Türkiye (Figure 1), whose coordinates are given in Table 1, 
during the summer season. Freshwater samples were 
collected into 50 mL falcon tubes and immediately transferred 
to the laboratory environment.

 
Figure 1. Representation of the regions where water samples were taken on the map of Türkiye

Table 1. Details of the freshwater sources from which microalgae 
were isolated 

Geographical 
Areas Freshwater source Coordinate Isolate 

code 
Mediterranean 
Region  

Dim Stream 
Antalya 

36°33'08.5"N 
32°11'11.4"E E1 

Black Sea 
Region  

Tokat Erbaa village 
fountain 

40°35'31.7"N 
36°40'54.4"E E2 

Marmara Region Tunca River Edirne  41°41'44.5"N 
26°33'25.8"E E3 

The medium used in the isolation and cultivation studies 
was BG11 (Rippka, 1988). This medium is generally used for 
the cultivation of cyanobacteria and is also frequently used for 
the cultivation of members of the Chlorophyta group (López-
Pacheco et al., 2021; Perendeci et al., 2019). BG 11 medium 
components are summarized in Table 2. 

Microalgae isolation and culture conditions 

Freshwater samples from three different geographical 
regions of Türkiye were centrifuged at 5000 rpm for 10 min to 
precipitate the microbial biomass. 1 mL sample was taken from 
the pellet obtained and seeded separately into culture media 
containing BG11 liquid media in 250 mL flasks. They were then 
incubated at 25±2 °C under 48 µmol/m2s (2400 lx) light (Figure 
2). At the end of the incubation, the microalgae were inoculated 
into agar petri dishes containing BG11 medium by taking 1 

loopful sample. Freshwater samples taken from the source 
were firstly inoculated in liquid media and then isolated in petri 
dishes in order to strengthen microalgae growth and thus 
obtain more biomass. Colonies formed in petri dishes were 
isolated by micromanipulation by planting them in new petri 
dishes. In the final stage, the purified microalgae cells were 
transferred to liquid medium. To confirm axenity, these liquid 
cultures were also tested for bacterial contamination by plating 
on bacteriological media. 
Table 2. BG 11 medium components 

BG11 medium components 
NaNO3 1.5 g/L 
Stock solutions g/L 
A:K2HPO4 0.04 
B:MgSO4.7H2O 0.075 
C:CaCl2.2H2O 0.03 
D:Na2CO3 0.02 
E: Citric acid 6.00 
Ferrous ammonium citrate 6.00 
Na2 EDTA 1.0 
A5 solution mL/L 
H3BO3 2.86 
MnCl2.4H2O 1.81 
ZnSO4.7H2O 0.222 
Na2MoO4.5H2O 0.390 
CuSO4.5H2O 0.079 
Co(NO3)2.6H2O 0.049 
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Figure 2. Cultivation of isolates 

The isolates were inoculated into horizontal agar tubes 
containing agar-BG 11 and incubated at 25 ± 2 °C under 48 
µmol/m2s (2400 lx) light and stock cultures were obtained.  

Identification of microalgae PCR and sequencing 
PCR and sequencing of eukaryotic microalgae samples for 

molecular identification of microalgal isolates were performed 
by 18S rRNA gene amplification of cultures in the logarithmic 
growth phase. The 18S rRNA region was amplified using the 
following primers; forward p23SrV_F: 5'-
GGACAGAAAGACCCTATGAA -3' and reverse p23SrV_R: 5'-
TCAGCCTGTTATCCCTAG-3' (Sherwood and Presting, 
2007). PCR was performed in 50 mL of reaction mix containing 
0.2 mM of each primer, 0.2 mM of each dNTP, 1.5 mM MgCl2 
and 30 ng of template DNA. Super-HotTaq Taq DNA 
polymerase (Bioron GmbH, Germany) was the enzyme used 
for amplification. The initial denaturation step of PCR-
amplification was performed at 95 °C for 10 min, followed by 
35 cycles of denaturation at 95 °C for 45 s, annealing at 60 °C 
for 45 s, elongation at 72 °C for 45 s, and final extension at 72 
°C for 10 min.  

The amplified 5 μL product was analyzed in agarose gel 
electrophoresis on a 1.2 % agarose gel with 8V/cm ethidium 
bromide and visualized on a UVP gel imaging system. The 
amplified PCR product was purified using a QIAGEN gel 
extraction kit. A total of 18 srRNA amplified products at a 
concentration of 100 ng/μL were used for sequencing. 

Analytical Methods  
a. Cell development analysis 
Cellular growth of isolated microalgae was determined by 

calculating optical density (OD600), total dry weight (X), specific 
growth rates (μ) and maximum productivity (Pmax). Optical 
density was determined by spectrophotometric analysis of the 
samples at 600 nm; dry cell weight was determined by 

weighing the samples after centrifugation at 3421x g = 5000 
rpm for 10 min, drying in a sterilizer at 80 ºC for 1 night and 
then weighing. Specific growth rate (μ) was determined 
according to the following equation (Ip and Chen, 2005); 

In this equation, X2 (g/L) is the dry cell weight at time t2 and 
X1 (g/L) is the dry cell weight at time t1. 

𝜇𝜇 =
𝑙𝑙𝑙𝑙𝑋𝑋2 − 𝑙𝑙𝑙𝑙𝑋𝑋1
𝑡𝑡2 − 𝑡𝑡1

 

Maximum productivity was calculated according to the 
following equation, where X (g/L) is the dry cell weight at time 
t and X0 is the dry cell weight at time t0. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑋𝑋 − 𝑋𝑋0
𝑡𝑡 − 𝑡𝑡0

 

b. CO2 biofixation analysis 

CO2 biofixation rates (F g/g) were calculated according to 
the following equation (Cheah et al., 2015; Pegallapati and 
Nirmalakhandan, 2013; Yadav et al., 2015). 

F = aP x V 

a: 1.833 g CO2, Px: productivity, V: culture volume. 

c. Chlorophyll analysis 

Chlorophyll analysis was performed according to the 
method developed by Porra et al. (1989). Accordingly, 
chlorophyll a was determined at 646.6 nm and chlorophyll b 
was determined at 663.6 nm. Chlorophyll (a+b) was calculated 
as total chlorophyll after calculating chlorophyll a and b 
separately. Chlorophyll concentrations were expressed as µg 
chlorophyll per milliliter. 

d. Data interpretation and statistical analysis 
The recorded results were calculated and interpreted using 
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descriptive statistical analysis (±S.E.). All studies were 
performed in triplicate. Variances between the data were 
analyzed in Excel program using %RSD (Relative standard 
deviation). Before interpreting the data, standard errors were 
calculated according to the following equation (Kenney and 
Keeping, 1951); 

𝑆𝑆𝑆𝑆 = �𝜎𝜎2 

SE: Standard error, ỽ: Average of the variable to be 
analyzed 

RESULTS  
Identification of microorganisms 
At the end of PCR and sequencing studies, according to 

the results of 18 srRNA, sample E1 was identified as C. 
sorokiniana (NCBI GenBank accession number PP326235) 
(Shihira and Krauss, 1965); sample E2 as P. wilhelmii (NCBI 
GenBank accession number PP326230) (Somogyi et al., 2013) 
and sample E3 as T. obliquus (NCBI GenBank accession 
number PP326236) (Wynne and Hallan, 2016). According to 
the sequences prepared according to the closest species on 
NCBI  

For C. sorokiniana; 

CTGTTTTATACTGTGAAACTGCGAATGGCTCATTAAATCA
GTTATAGTTTATTTGATGGTACCTACTACTCGGATACCCG
TAGTAAATCTAGAGCTAATACGTGCGCAAATCCCGACTTC
TGGAAGGGACGTATTTATTAGATAAAAGGCCGACCGGGC
TTGCCCGACTCGCGGTGAATCATGATAACTTCACGAATC
GCATGGCCTCGTGCCGGCGATGTTTCATTCAAATTTCTG
CCCTATCAACTTTCGATGGTAGGATAGAGGCCTACCATG
GTGGTAACGGGTGACGGAGGATTAGGGTTCGATTCCGG
AGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGAAG
GCAGCAGGCGCGCAAATTACCCAATCCTGACACAGGGA
GGTAGTGACAATAAATAACAATACTGGGCCTTTTCAGGTC
TGGTAATTGGAATGAGTACAATCTAAACCCCTTAACGAG
GATCAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGG
TAATTCCAGCTCCAATAGCGTATATATAAGTTGCTGCAGT
TAAAAAGCTCGTAGTTGGATTTCGGGTGGGGCCTGCCG
GTCCGCCGTTTCGGTGTGCACTGGCAGGGCCCACCTTG
TTGCCGGGGACGGGCTCCTGGGCTTCACTGTCCGGGAC
TCGGAGTCGGCGCTGTTACTTTGAGTAAATTAGAGTGTT
CAAAGCAGGCCTACGCTCTGAATACATTAGCATGGAATA
ACACGATAGGACTCTGGCCTATCCTGTTGGTCTGTA 
Similarity Rate %99.87; 

For P. wilhelmii; 

GGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAAT
GCCGCGTGAAGGATGACGGCCTATGGGTTGTAAACTTCT
TTTCTCAGAGAAGAATTTTGACGGTATCTGAGGAATAAGC
ATCGGCTAACTCTGTGCCAGCAGCCGCGGTAAGACAGA
GGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGCGT
CTGTAGGTTGTGTGACAAGTTTTCTGTCAAAGATCAGGG
CTTAACCCTGGGCCGGCAGGAAAAACTATCATGCTAGAG
TTCGGTAGAGGCAGAGGGAATTCCCAGTGGAGCGGTGA
AATGCGTAGATATTGGGAGGAACACCAAAGGCGAAAGCA

CTCTGCTGGGCCGAGACTGACACTGAGAGACGAAAGCG
AGGGGAGCAAAAGGGATTAGATACCCCTGTAGTCCTGTC
TCTTATACACATCTC Similarity Rate: %99.53 

For T. obliquus; 

CTGCTTATACTGTGAAACTGCGAATGGCTCATTAAATCAG
TTATAGTTTATTTGGTGGTACCTTACTACTCGGATAACCG
TAGTAATTCTAGAGCTAATACGTGCGTAAATCCCGACTTC
TGGAAGGGACGTATATATTAGATAAAAGGCCGACCGAGC
TTTGCTCGACCCGCGGTGAATCATGATATCTTCACGAAG
CGCATGGCCTTGTGCCGGCGCTGTTCCATTCAAATTTCT
GCCCTATCAACTTTCGATGGTAGGATAGAGGCCTACCAT
GGTGGTAACGGGTGACGGAGGATTAGGGTTCGATTCCG
GAGAGGGAGCCTGAGAAACGGCTACCACATCCTAGGAA
GGCAGCAGGCGCGCAAATTACCCAATCCTGATACGGGG
AGGTAGTGACAATAAATAACAATACCGGGCATTTCATGTC
TGGTAATTGGAATGAGTACAATCTAAATCCCTTAACGAGG
ATCCGTTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGT
AATTCCAGCTCCAATAGCGTATATTTAAGTTGTTGCAGTT
AAAAAGCTCGTAGTTGGATTTCGGGTGGGTTCTAGCGGT
CCGCCTATGGTGAGTACTGCTATGGCCTTCCTTTCTGTC
GGGGACGGGCTTCTGGGCTTCACTGTCCGGGACTCGGA
GTCGACGTGGTTACTTTGAGTAAATTAGAGTGTTCAAAGC
AGGCTTACGCCAGAATACTTTAGCATGGAATAACACGAT
AGGACTCTGGCCTATCTTGTTGGTCTGTAGGACCGGAGT
AATGA Similarity Rate: 99.75% was found. 

According to the molecular identification studies, the 
results of the identification of three different microalgae species 
isolated from three different geographical regions are 
summarized in Table 3. 
Table 3. Molecular species identification results according to 

geographical regions 

Geographical 
Regions Freshwater Source Coding Type 

Mediterranean 
Region Dim Stream Antalya E1 C. sorokiniana 

Black Sea 
Region 

Tokat Erbaa village 
fountain E2 P. wilhelmii 

Marmara 
Region Tunca River Edirne E3 T. obliquus 

Culturing of microorganisms 
C. sorokiniana, P. wilhelmii and T. obliquus microalgae 

were incubated in 250 mL flasks containing 100 mL BG11 
medium at 25±2°C under 48 µmol/m2s (2400 lx) light for 7 
days. The dry weight values X(g/L) of microalgae recorded during 
the 3rd and 7th days of incubation period and calculated based on 
optical density values at 600 nm are shown in Figure 3. 

Bioenergy analysis of microalgae 
Dry weight (X) (g/L), chlorophyll concentrations chl (a+b) 

(µg/mL), specific growth rates (µ) (1/d), maximum biomass 
productivity (Pmax) (g/Ld) and CO2 biofixation rates (FCO2) 
(mgCO2/d) of C. sorokiniana, P. wilhelmii and T. obliquus 
microalgae are summarized in Table 4. 
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Figure 3. Dry weight values (X (g/L)) of C. sorokiniana, P. wilhelmii 

and T. obliquus 
Table 4. Dry weight (X) (g/L), chlorophyll concentrations chl (a+b) 

(µg/mL), specific growth rates (µ) (1/d), maximum biomass 
productivity (Pmax) (g/Ld) and CO2 biofixation rates (FCO2) 
(mgCO2/d) of C. sorokiniana, P. wilhelmii and T. obliquus 
microalgae. 

 C. sorokiniana P. wilhelmii T. obliquus 

X (g/L) 1.02±0.036 1.86±0.041 0.80±0.033 
Chl (a+b) 
(µg/mL) 0.146±0.0052 0.278±0.0061 0.181±0.0073 

µ (1/d) 0.162±0.012 0.465±0.059 0.207±0.019 

Pmax (g/Ld) 0.122±0.063 0.392±0.030 0.111±0.059 
FCO2 
(mgCO2/d) 
(0.1 L) 

0.022±0.0008 0.072±0.0052 0.020±0.0060 

According to bioenergy calculations, among the three 
different geographical regions, P. wilhelmii microalga isolated 
from the village fountain of Tokat Erbaa in the Black Sea 
Region showed higher growth rate of 1.86 g/L, higher chl (a+b) 
value of 0.278 µg/mL, specific growth rate as 0.465 1/d and 
productivity as 0.392 g/Ld than the other two isolates under the 
same environmental conditions. P. wilhelmii microalgae was 
found to be capable of fixing more CO2 than C. sorokiniana and 
T. obliquus microalgae with a value of 0.072 mgCO2/d. 

DISCUSSION 

Due to their metabolism, microalgae take CO2 from the 
atmosphere through photosynthesis, incorporate it into their 
structures and produce biomass. Isolation and cultuvation of 
microalgae has been an important area for many years (Ozturk 
et al., 2019; Atıcı, 2020; Derakhshandeh et al., 2021). 
Produced biomass is also used in many different areas 
(Derakhshandeh et al., 2021). Microalgae are therefore a 
promising feedstock for applications in biofuel production and 
are recognized as valuable bioproducts. When microalgal fuels 
are compared to fuels produced from land plants, microalgae 
can produce 60 times more fuel in the same area. Also, the 
lack of terrestrial area requirements is an advantage (Skjanes 
et al., 2013). 

In our study, C. sorokiniana isolated from water samples 
taken from Dim Stream in the Mediterranean Region is a very 
useful microalgae preferred for reducing CO2 emissions and 
producing microalgal biomass commercially (Qin et al., 2023).It 
has also been used in aquatic toxicity assessment studies 

caused by pollutants such as tetrabromobisphenol A and Cd 
(II) from e-waste (Liu et al., 2023). It is also known that this 
microalgae is a suitable species for recycling studies by 
obtaining lipids and bioethanol from its biomass when grown in 
the mixed peel extract of potato, banana and sweet lime 
(Malakar et al., 2023). In another study, C. sorokiniana was 
used for Cd (II) biomineralization from soil (Xia et al., 2023). It 
was also used to evaluate the ecotoxicity of some antibiotics 
on aquatic organisms (Li et al., 2023). C. sorokiniana is also 
considered as a highly efficient source for commercial lutein 
production (Vadrale et al., 2023). Besides Chlorella is also 
used in heavy metal and lipid extraction studies (Atıcı et al., 
2008; Derakhshandeh et al., 2019). Additionally, its ability to 
grow in many different wastes makes it advantageous (Atici 
and Fidan, 2022). 

P. wilhelmii isolated from water samples taken from Erbaa 
village fountain in Tokat, Black Sea Region is a member of the 
Pseudochloris/Picochlorum genus and has rapid growth rate, 
extensive range of nutrients and salinity tolerance. (Von 
Alvensleben et al., 2013; Budiša et al., 2019; Concas et al., 
2019). Furthermore, P. wilhelmii is a promising microalgae for 
oil refinery wastewater treatment and high-value biomass 
production (Blazina et al., 2022). 

T. obliquus isolated from water from the Edirne Tunca 
River in the Marmara Region has been used for lead and 
cadmium removal (Tafti et al., 2023), bioremediation, CO2 
removal and biofuel production (Selvan et al., 2023) and beta 
carotene production (Singh et al., 2019). 

Among microalgae genera, the genus Scenedesmus is the 
third most studied genus in the world in terms of the number of 
published literature (Oliveira et al., 2021; Garrido-Cardenas et 
al. 2018). Scenedesmus is one of the most abundant 
microalgae in freshwater. Species of this genus have single-
celled individuals that can form associations of 2 to 32 cells. 
Mostly, 4-celled ones are common (Oliveira et al., 2021). 

T. obliquus has been successfully studied in wastewater 
treatment and the resulting biomass has been used in 
renewable energy studies (Oliveira et al., 2021). For example, 
in a study comparing T. obliquus with microalgae such as C. 
vulgaris (34%) and Oocystis minuta (27%) in removing sulfate 
from wastewater, it outperformed other algae by 36% (Ajala 
and Alexander, 2020). In another study, Ahmad et al. (2019) 
showed that T. obliquus can remove approximately 94% of 
phosphate from municipal wastewater. 

Microalgae cells have also begun to be used in biosensor 
studies due to their sensitivity to environmental variables 
(Congur et al., 2022). In this context, the development of 
biosensors for the detection and monitoring of T. obliquus and 
organic molecules in water has attracted the attention of 
researchers (Oliveira et al., 2021). Gonzalez and Lorenzo 
(2019) evaluated the potential of detecting pesticides in water 
in the cathode they developed using T. obliquus cells. As a 
result, it was determined that T. obliquus showed excellent 
sensitivity and rapid response to environmental changes. 

0
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Third-generation biofuels obtained from microalgae, 
lignocellulosic raw materials, soybeans, corn and other fossil 
fuels and crops used in biofuel production can be shown as an 
alternative (Safi et al., 2014; Goh et al., 2019). It has been 
reported that T. obliquus can reach 37.92% ethanol conversion 
(El-Sheekh et al., 2014) and 90.81% biodiesel conversion 
(Guldhe et al., 2015) rates and has the potential to produce 
high amounts of lipids and carbohydrates. 

T. obliquus is a microalgae that is also used successfully 
in the field of health. For example, polysaccharides of T. 
obliquus extracted under different environmental conditions 
showed antiviral activity against viruses such as Herpes 
simplex virus, Hepatitis C virus, Rotavirus and Coxsackievirus 
(Singab et al., 2018). Thanks to T. obliquus extract, a 40%, 
30%, 10% and 40% reduction in Hepatitis C virus, Rotavirus, 
Herpes simplex virus and Coxsackievirus was shown, 
respectively. It has also been reported that T. obliquus extract 
can also inhibit the growth of 50.4% of human liver cancer cells 
under in vitro experiments. 

CONCLUSION  
Microalgae isolation, cultivation and investigation of the 

use of isolated microalgae in biotechnology studies are 
important issues in the field of sustainable energy. Within the 
scope of the study, while microalgae isolated from different 

freshwater sources in Türkiye were introduced to the literature, 
bioenergy calculations of these new isolates were also made 
through kinetic methods. In conclusion, the isolated microalgae 
are the species that have the potential for rapid growth and 
biotechnological approaches in the literature. In this context, 
they have the potential to be used in future studies. 
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