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Abstract 

 

Breast cancer is a type of cancer caused by the uncontrolled growth and proliferation 

of cells in the breast tissue. Differentiating between benign and malignant tumors is 

critical in the detection and treatment of breast cancer. Traditional methods of cancer 

detection by manual analysis of radiological images are time-consuming and error-

prone due to human factors. Modern approaches based on image classifier deep 

learning models provide significant results in disease detection, but are not suitable 

for clinical use due to their black-box structure. This paper presents a semantic 

segmentation method for breast cancer detection from ultrasound images. First, an 

ultrasound image of any resolution is divided into 256×256 pixel patches by passing 

it through an image cropping function. These patches are sequentially numbered and 

given as input to the model. Features are extracted from the 256×256 pixel patches 

with pre-trained ResNext models placed in the encoder network of the U-Net model. 

These features are processed in the default decoder network of the U-Net model and 

estimated at the output with three different pixel values: benign tumor areas (1), 

malignant tumor areas (2) and background areas (0). The prediction masks obtained 

at the output of the decoder network are combined sequentially to obtain the final 

prediction mask. The proposed method is validated on a publicly available dataset of 

780 ultrasound images of female patients. The ResNext-based U-Net model achieved 

73.17% intersection over union (IoU) and 83.42% dice coefficient (DC) on the test 

images. ResNext-based U-Net models perform better than the default U-Net model. 

Experts could use the proposed pixel-based segmentation method for breast cancer 

diagnosis and monitoring. 
 

 
1. Introduction 

 

Cancer is a disease resulting from the accumulation of 

genetic mutations or aberrant alterations in cellular 

genes [1]. In a healthy body, cells follow a regulated 

cycle, but mutations can disrupt this balance, leading 

to uncontrolled cell growth [2]. These mutations can 

be inherited or occur due to environmental factors like 

radiation, chemicals, or viruses [3]. 

 When a gene loses its normal function or 

gains a new abnormal function due to a mutation, it 

can disrupt the complex signaling pathways that 

regulate cell growth and division. As a result, the 
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affected cells gain the ability to divide uncontrollably 

and form a mass of abnormal cells called a tumor [4]. 

Tumors can be broadly classified into two main 

categories: benign tumors and malignant tumors [5]. 

Benign tumors are usually not cancerous and do not 

pose an immediate threat to health. The cells in benign 

tumors are very similar to normal cells and their 

growth rate tends to be relatively slow. Importantly, 

they do not invade nearby tissues or spread to other 

parts of the body [6]. Benign tumors are therefore 

considered localized and do not usually lead to life-

threatening conditions. In contrast, malignant tumors 

become cancerous and have the potential to cause 
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serious harm to an individual's health. If left 

untreated, malignant tumors can invade surrounding 

tissues and organs and have the ability to metastasize, 

meaning they can spread to distant parts of the body 

through the bloodstream or lymphatic system [7]. 

 Breast cancer is the most frequently 

diagnosed cancer among women worldwide [8]. It 

originates in the cells of the breasts, particularly in the 

ducts or lobules. As the disease progresses, malignant 

cells derived from these areas possess the ability to 

invade neighboring healthy tissues. Moreover, if 

cancer cells infiltrate the lymph nodes, they can easily 

spread via the lymphatic system to distant organs such 

as the bones, lungs, liver, or brain [9]. Detecting 

breast cancer in its early stages is therefore crucial for 

successful treatment and improved outcomes [10]. 

Specialists use radiological images to assess the 

structure of breast tissue and possible tumor findings. 

However, manual evaluation of radiologic images is 

time-consuming and involves subjective decision 

depending on the experience and training of the 

specialist. To overcome these challenges, it is a 

popular research topic to use artificial intelligence 

methods to detect breast cancer findings from 

radiological images. Michael et al. [11] proposed a 

LightGBM-based method for breast cancer detection 

from ultrasound images. The proposed method is 

validated on a dataset of 912 samples. To classify 

malignant and benign tumors, 185 features were 

extracted manually. Using these features, LightGBM 

achieved 99.86% accuracy. González-Luna et al. [12] 

proposed a method for classifying breast ultrasound 

images as benign or malignant. The dataset used in 

the study contains 2032 samples, of which 1341 are 

benign lesions and 691 are malignant lesions. Linear 

discriminant analysis (LDA) outperformed other 

classifiers by classifying the test samples with 

89.00% accuracy, 82.00% sensitivity and 93.00% 

specificity. Wei et al. [13] proposed a method for 

automatic classification of cancer from breast 

ultrasound images. The proposed method is based on 

benign and malignant lesion features. Validated on a 

total of 1061 different ultrasound images, the support 

vector machine (SVM) classifier achieved 75.94% 

accuracy, 66.37% sensitivity, 86.87% specificity and 

85.23% precision. 

 The traditional machine learning approach to 

breast cancer detection involving feature extraction 

from radiological images requires feature engineering 

and performs poorly on complex datasets. Modern 

deep learning approaches based on convolutional 

neural networks (CNN) provide significant results for 

image classification studies. Atrey et al. [14] 

proposed a hybrid method (CNN+LSTM) for the 

classification of benign and malignant breast cancer 

tumors. They used 43 mammogram images and 43 

ultrasound images. Dataset samples were increased 

by using data augmentation techniques. The proposed 

model achieved a classification accuracy of 97.16% 

for mammography images and 98.84% for ultrasound 

images. Raza et al. [15] proposed the 

DeepBraestCancerNet model for breast cancer 

detection and classification. In the training and 

validation of the model, 1030 samples obtained from 

two different publicly available ultrasound datasets 

were used. The proposed model achieved 99.35% 

classification accuracy. Gupta et al. [16] proposed a 

modified ResNet-50 model that can classify breast 

ultrasound as normal, benign or malignant. Validated 

on a publicly available dataset, the model achieved 

97.8% accuracy, 97.68% recall, 99.21% precision and 

98.44% F1-score. 

 CNN models have demonstrated promising 

results in classification studies. However, their black 

box structure renders them unsuitable for clinical 

implementation. The primary challenge lies in the 

inability to identify which pixel areas in the image are 

crucial for predictions. To overcome this limitation, 

CNN models can be made explainable using class 

activation mapping (CAM) algorithms that visualize 

the feature maps from the last convolutional layer as 

heat maps. Nonetheless, CAM algorithms employ a 

coarser approach when locating objects at the region 

level. Therefore, the output of the CAM algorithm is 

less accurate compared to sharp and precise pixel-

based segmentation results. Byra et al. [17] proposed 

a deep learning-based method for automatic 

segmentation of breast cancer tumor areas in 

ultrasound images. The proposed method was 

evaluated on 882 different ultrasound images. Of the 

882 images, 632 images were used for training, 100 

images for validation and 150 images for testing. The 

trained U-Net and SK-U-Net models made mask 

predictions on the 150 images allocated for testing. As 

a result of the predictions, the SK-U-Net model 

achieved a Dice Score (DS) of 82.60%. Sannasi and 

Rajaguru [18] proposed a deep learning-based 

approach to segment tumor areas from breast cancer 

ultrasound images. They used a publicly available 

dataset containing 780 ultrasound images collected 

from 600 different female patients. An adaptive 

median filtering algorithm was used to remove the 

noise in the images. FCN16s, FCN8s, SegNet, 

SegNet, U-Net, SK-U-Net and SKMAT-U-Net 

models built specifically for this study were trained 

for 60 epochs with 224×224 input resolution and 

batch size of 12. As a result of the completed training 

stages, the SKMAT-U-Net model is the most 

successful model among the tested models, reaching 

a DS value of 92.90%. 
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 Segmentation studies have shown high 

precision and high accuracy. However, since 

segmentation models can process input images at a 

fixed resolution, the proposed methods are usually 

based on image resizing. Information loss is 

inevitable in resized images. In addition, given the 

availability of different radiological devices and 

technologies today, the scope of methods that expect 

a fixed input size is quite limited. 

 This paper proposes a ResNext-based U-Net 

model for segmenting benign and malignant breast 

cancer tumors from ultrasound images. The proposed 

model first cropping the input image into 256×256 

pixel patches and then extracts features with the 

encoder blocks (ResNext) of the U-Net model. The 

model processes the output of the encoder network in 

the default decoder network of the U-Net model to 

obtain the prediction mask image. The sequentially 

processed patches are merged again in the same order 

to reach the original size. The approach proposed in 

this study has the potential to be applied clinically for 

computer-aided automatic breast cancer detection due 

to its flexible structure. The main contributions of this 

study can be summarized as follows: 

 Semantic segmentation was performed with 

the ResNext-based U-Net model using a 

public dataset. 

 A method is proposed to process different and 

high resolution images in the U-Net model. 

 Hardware requirements are reduced by using 

input images divided into 256×256 pixel 

patches. 

 The proposed model outperforms the default 

U-Net model. 

 

2. Material and Method 

 

A segmentation system was developed to identify 

benign and malignant tumor regions in ultrasound 

images using a deep learning model based on 

ResNext and U-Net. The block diagram illustrating 

the system is given in Figure 1. 

 The use of images with high and non-constant 

resolution poses challenges that can hamper the 

efficiency and practicality of the model. In order to 

overcome these challenges, a method is proposed that 

involves cropping the original images into smaller 

and more manageable patches. In this way, high-

resolution images can be utilized without imposing 

the memory constraints of the hardware. 

 

2.1. Ultrasound Dataset 

 

In this study, we used a publicly available dataset [19] 

of ultrasound images of female patients, with 

corresponding mask images showing tumor areas 

marked by an expert. The dataset was compiled in 

2018 and consists of samples from 600 different 

patients ranging from 25 to 75 years old. The dataset 

consists of a total of 780 different images, all stored 

in PNG file format. The images have different 

resolutions with non-fixed sizes ranging from 

190×335 pixels to 1048×578 pixels. The images in the 

dataset are categorized into three different classes: 

normal, benign and malignant.  
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Figure 1. Block diagram of the proposed method
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These classes serve to classify ultrasound images 

according to the presence and nature of tumors. To 

provide a better understanding of the structure of the 

dataset, the distribution of images into the three 

classes is summarized in Table 1. 

 

Table 1. Classes and distributions of dataset samples 

Class Name Number Of Samples 

Benign 437 

Malignant 210 

Normal 133 

Total 780 

 

Typically, in medical imaging, different 

tumor or tissue types are assigned different pixel 

values or color codes to facilitate easier identification 

and analysis [20]. In this particular dataset, however, 

mask images do not use different pixel values to 

distinguish between benign and malignant tumors. 

Instead, mask images mark the regions where tumors 

are present in ultrasound images, regardless of their 

specific structure. Figure 2 shows a randomly selected 

set of dataset examples and their corresponding mask 

images. 

Original Image GT Mask

(a) Benign
Original Image GT Mask

(b) Malignant
Original Image GT Mask

(c) Normal  

Figure 2. Dataset samples 

 

2.2. Pre-processing 

 

In the dataset samples, some images contain 

multiple tumor areas. To accurately represent these 

multiple tumor regions, separate mask images were 

initially created for each different area in an image. 

However, having multiple mask images for a single 

ultrasound image can lead to challenges and may not 

be ideal for certain analyses or applications. To 

address this issue, a preprocessing step was applied to 

the dataset samples. This pre-processing involves 

merging the individual mask images associated with 

multiple tumor areas within a single ultrasound 

image. This results in a merged mask image that 

covers all tumor regions in the image. The goal of this 

pre-processing step is to ensure that each ultrasound 

image in the dataset is associated with a single mask 

image, eliminating the complexity and potential 

complications of having multiple mask images for a 

single image. Figure 3 shows an example of a dataset 

with multiple mask images and the composite mask 

image generated after the pre-processing step. 

Pixel values are numerical representations of 

the intensity or color of each pixel in an image. If 

benign and malignant tumors have the same pixel 

values, it becomes problematic to create a reliable 

segmentation model that can accurately classify and 

distinguish between these two classes. To overcome 

this issue, a technique called pixel-based value 

substitution was employed. This technique involves 

replacing the original pixel values with new values 

that correspond to specific classes. In this case, a 

value of '1' was assigned to denote regions 

representing benign tumor areas, a value of '2' was 

assigned for malignant tumor areas, and a value of '0' 

was designated for areas defined as the background 

that do not contain tumor regions. The result of the 

pixel-based value substitution process is shown in 

Figure 4. 

 

Background (0)

Benign (1)

Background (0)

Malignant (2)

 

Figure 4. Class-based pixel value assignment 
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Figure 3. Combining multiple mask images into a single mask image 

 

The use of deep learning models for image 

segmentation often requires fixed input sizes to 

ensure consistent processing. However, in the case of 

the dataset used in this study, the samples did not have 

a fixed resolution, which posed a challenge for 

training a deep learning model. To address this issue, 

a decision was made to employ a deep learning model 

with an input size of 256×256 pixels, which is a 

commonly chosen size for various segmentation 

tasks. In order to adapt the original images and 

corresponding mask images to the desired input size, 

a cropping process was applied. This involved 

dividing the images into smaller sub-images, each 

with a size of 256×256 pixels. By cropping the 

images, it became feasible to train a deep learning 

model that expects fixed-size inputs. During the 

cropping process, some of the original images might 

not perfectly fit the 256×256 pixel size due to their 

inherent dimensions. In such cases, a padding method 

was utilized to address this discrepancy. The details 

of the image cropping and padding process are shown 

in Figure 5. After the padding and cropping 

operations are completed for the original images, the 

same operations are repeated for the mask images. In 

this way, there is no loss in the matching of the 

original image and the mask image. 
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Figure 5. The proposed padding process 

 

2.3. Segmentation Model 

 

The U-Net architecture is a popular CNN architecture 

that is widely used for image segmentation tasks, 

particularly in the field of biomedical image analysis 

[21]. The U-Net architecture derives its name from its 

shape, which resembles the letter "U". A block 

diagram of the U-Net architecture is given in Figure 

6. It is designed to address the challenges of pixel-

wise image segmentation, where the goal is to assign 

a label to each pixel in an image, indicating the class 

or category it belongs to.
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Max Pooling:Conv2D: Batch Normalization: Activation: UpSampling:Input Layer: Concatenate:

Encoder Blocks Decoder Blocks

Bridge

 

Figure 6. The default U-Net architecture 

 

This is particularly useful in applications such 

as medical image segmentation, where identifying 

and delineating specific structures or regions within 

an image is crucial [22]. The key characteristic of the 

U-Net architecture is its use of an encoder-decoder 

structure combined with skip connections. 

 To enhance the performance and efficiency of 

the U-Net model, pre-trained CNN networks can be 

utilized in the encoder layer [23]. These networks are 

models trained on large-scale datasets, such as 

ImageNet [24], and have learned to recognize a wide 

range of low-level and high-level features from 

images. The main advantage of using pre-trained 

CNN networks in the encoder layer is transfer 

learning. It allows us to leverage the knowledge and 

feature representations learned by the pre-trained 

models on a large dataset and apply it to a different 

task or domain with limited data. By using pre-trained 

CNN networks, we can benefit from their 

generalization capabilities and feature extraction 

power [25]. In many studies, these networks are used 

as feature extractors in the encoder layer of the U-Net 

model [26], [27]. The input images are passed through 

the pre-trained CNN network, and the output feature 

maps are then fed into the subsequent layers of the U-

Net model. The pre-trained CNN networks can 

capture generic features like edges, corners, textures, 

and object parts, which are beneficial for a wide range 

of computer vision tasks. By utilizing these pre-

trained networks, the U-Net model can achieve better 

performance, even when training data is limited. 

Moreover, using pre-trained networks in the encoder 

layer can help speed up the training process since the 

initial layers are already well-initialized with 

meaningful filters. 

 In this study, pre-trained ResNext-50 and 

ResNext-101 models are integrated into the encoder 

network of the U-Net models. The ResNeXt 

architecture is an extension of the ResNet 

architecture. It introduces a cardinality parameter to 

ResNet blocks, enabling increased model capacity 

and performance without significantly increasing 

computational complexity. The block diagram of the 

first encoder block of the ResNext-50 based U-Net 

model is given in Figure 7.  

In this study, three different models are 

compiled to study the effect of CNN architecture on 

the performance of the encoder network. These 

models are the default U-Net, ResNext-50 based U-

Net and ResNext-101 based U-Net (Models are 

available at (github.com/oguzhankatar/BCSeg). 

 

2.4. Performance Metrics 

 

In order to assess the performance of a segmentation 

algorithm, various metrics, including true positive 

(TP), true negative (TN), false positive (FP), and false 

negative (FN), are employed. To comprehensively 

evaluate segmentation algorithms, pixel-based 

evaluation techniques have been developed. These 

methods are pivotal in determining the algorithm's 

effectiveness in identifying and distinguishing 

malignant, background, and benign regions. They 

quantify the reate of overlap between the predicted 

segmentation and the ground truth. Several 

commonly utilized pixel-based evaluation methods 

can be summarized as follows. 
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ResNext-50 Encoder Block-1
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Input Layer:
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Add:

 

Figure 7. The first encoder block of the ResNext-50 based U-Net 

 

 Pixel accuracy (PA) measures the proportion 

of correctly classified pixels over the total 

number of pixels in the image [28]. 

 Intersection over Union (IoU) measures the 

overlap between the predicted and ground 

truth segmentation masks for each class [29]. 

 Dice coefficient (DC) is another metric that 

evaluates the overlap between the predicted 

and ground truth masks. The DC ranges from 

0 to 1, with 1 indicating a perfect match [30]. 

The equations used to calculate these 

methods and the advantages and disadvantages of 

each method are given in Table 2. 

 

Table 2. Performance metrics and details 

Method Equation Advantages Disadvantages 

PA 
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
 

A simple and 

straightforward metric. 

Effective for similar 

distributions of two classes. 

It can be misleading in 

unbalanced class 

distributions. 

IoU 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 

Resilient to class 

imbalance. Clearly shows 

the difference between 

correct and incorrect 

predictions. 

Poor performance on 

objects with sharp edges. 

DC 
2 × 𝑇𝑃

(2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 

Resilient to class 

imbalance. Performs well 

in object segmentation. 

Can be complex when there 

are multiple classes. 

3. Results 

 

The results of the U-Net models trained for 

segmentation of benign, malignant and background 

areas in ultrasound images are presented in this 

section. In addition, various evaluation metric values 

of the experimental findings are shown in the 

following sections. 
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3.1. Experimental Setups 

 

After the preprocessing steps on the images were 

completed, 70% of the images in the dataset were 

divided for training, 20% for validation and 10% for 

testing. The dividing process was randomized in such 

a way that the original image and the mask image 

were kept together. The setup of the data dividing 

process is given in Figure 8. 

Images Masks

Random Selection

109876

1 2 3 4 5 1 2 3 4 5

6 7 8 9 10

2 2 5 5 7 7 10 10 1 1 4 4 3 3 6 6 9 9 8 8

Train 70% Validation 20% Test 10%  

Figure 8. Dividing of training, validation and test subsets 

 

U-Net models with 256×256×3 input size 

were included in the training thanks to the 

'Segmentation Models' library. Models were created 

by integrating pre-trained ResNext-50 and pre-trained 

ResNext-101 models into the encoder network of the 

default U-Net model. In order to accurately compare 

the performance of the default U-Net, ResNext-50 

based U-Net and ResNext-101 based U-Net models, 

the parameters in the training and validation processes 

were kept identical. Each model was compiled with 

Adam optimization and a learning rate of 0.0001. In 

Adam optimization, the weights are updated by the 

mathematical process given in Equation 1. 

𝑤𝑡  represents the updated weights at step 𝑡, 𝑤𝑡−1 

represents the weights at step 𝑡 − 1, η is the constant 

known as the learning rate, �̂�𝑡  represents the moving 

average of the gradients, �̂�𝑡 represents the moving 

average of the squares of the gradients, ∈ represents a 

small positive value added to avoid division by zero 

error. 

𝑤𝑡 = 𝑤𝑡−1 − 𝜂
�̂�𝑡

√�̂�𝑡 + ∈
                                               (1)                                                 

 

The batch size was 16 and the models were 

trained for 100 epochs with the Dice Loss function. 

The mathematical equation used to calculate the Dice 

Loss value is given in Equation 2. In this equation, 

𝑝𝑡𝑟𝑢𝑒  represents the ground truth mask, 

𝑝𝑝𝑟𝑒𝑑  represents the model's prediction mask, and ∈ 

represents a small positive value added to avoid a 

division by zero error. 

 

𝐿𝑜𝑠𝑠𝐷𝑖𝑐𝑒 =  
2∗ ∑ 𝑝𝑡𝑟𝑢𝑒∗ 𝑝𝑝𝑟𝑒𝑑

∑ 𝑝2
𝑡𝑟𝑢𝑒+ ∑ 𝑝2

𝑝𝑟𝑒𝑑 + ∈
                                (2)                                                 

All experimental phases were carried out on 

the A100 GPU in the Google Colab environment 

using the Python programming language. 

 

3.2. Experimental Results 

 

The number of trainable parameters in a model is a 

crucial factor that greatly influences the training and 

validation process. For the proposed models aimed at 

segmenting benign, malignant, and background areas 

from ultrasound images, the number of trainable 

parameters is as follows: 23,748,531 for the default 

U-Net, 31,993,270 for the ResNext-50 based U-Net, 

and 51,142,070 for the ResNext-101 based U-Net. 

The duration of each epoch in training the models 

directly correlates with the number of trainable 

parameters. Throughout the training process, the IoU 

and loss values were recorded at each epoch on both 

the train and validation sets. The IoU value represents 

the model's accuracy in segmenting correctly, while 

the loss value quantifies the discrepancy between the 

model's predictions and the true values. Figure 9 

illustrates the IoU and loss graphs for each model 

during the training and validation phases.  

The performance discrepancy observed 

between the default U-Net model and the models 

incorporating pre-trained ResNext-50 and pre-trained 

ResNext-101 architectures can be attributed to the 

differences in the feature extraction capabilities of 

these architectures. The default U-Net model 

typically consists of simple convolutional layers, 

while the pre-trained ResNext-50 and ResNext-101 

architectures are based on deeper and more complex 

networks, pre-trained on large-scale datasets.
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Figure 9. Train and validation graphs 

 

By leveraging the knowledge encoded in the 

pre-trained ResNext-50 and ResNext-101 

architectures, the U-Net models with these 

architectures as encoders benefit from transfer 

learning. The pre-trained models have already learned 

generalizable features from a large and diverse 

dataset, allowing them to extract relevant information 

for the segmentation task more effectively. This 

transfer of knowledge gives the models a head start 

during training, resulting in improved segmentation 

performance compared to the default U-Net model. 

Therefore, the lower performance of the default U-

Net model can be attributed to its relative simplicity 

and limited ability to capture intricate image features 

compared to the more advanced pre-trained ResNext-

50 and ResNext-101 architectures, which good at 

feature extraction tasks. The weights obtained by the 

models after training were saved in 'hdf5' format. 

Using these weights, the models were tested on the 

test set samples. The samples randomly selected 

among the predictions made by the models in the test 

phase are given in Figure 10. 
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Figure 10. Test samples and predicted masks 

 

Performance metrics were calculated by 

comparing the predictions with the ground truth mask 

images on a pixel basis. The bar graph of these 

metrics is given in Figure 11. 
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Figure 11. The performance values of test predictions 

 

When the performance of the models on the 

random test images is analyzed, it is seen that the 

models achieve high pixel accuracy rates. However, 

it is not sufficient to make a comparison between the 

models based on pixel accuracy alone. For this reason, 

the class-based IoU values of the models were 

analyzed on each test sample. The class-based IoU 

values obtained by the models in their predictions on 

the test images are presented in Table 3. 

 

Table 3. The IoU values obtained on test images 

Classes ResNext-50 U-Net ResNext-101 U-Net U-Net 

Background (0) 89.06% 87.27% 84.10% 

Benign (1) 71.44% 68.34% 65.33% 

Malignant (2) 59.01% 61.11% 54.79% 

Mean IoU 73.17% 72.24% 68.07% 



O. Katar, O. Yıldırım / BEU Fen Bilimleri Dergisi 12 (3), 871-886, 2023 

882 
 

The models performed worse than the other 

classes in classifying malignant areas in the test 

images. The main reasons for this are the visual 

similarity of malignant areas to background areas and 

the insufficient number of samples in the dataset. 

Even though the ResNext-50 based U-Net model 

classified malignant areas with an IoU rate of 59.01%, 

it is the model with the highest mean IoU value due to 

its superior performance over other classes. The 

ResNext-50 based U-Net model proposed in this 

study can only predict on 256×256 pixel images. 

However, thanks to the image cropping and image 

merging functions, it can produce predictions for 

images of any size without being bound to any 

resolution value. The proposed method for the model 

to produce predictions on all images without 

depending on any resolution value is given in Figure 

12. 
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Figure 12. The proposed method for input images of different resolutions 

 

Different radiological devices used today produce 

images of various resolutions for medical imaging. 

With the proposed method, it is possible to directly 

feed images of different resolutions obtained from 

radiological devices into the model. This provides 

more flexibility to the experts, allowing them to 

evaluate images from various devices on the same 

model. The predictions of the ResNext-50-based U-

Net on ultrasound images with different resolutions 

are presented in Figure 13. 
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Figure 13. The predictions on images of different resolutions 

 

4. Discussion 

 

Breast cancer segmentation using radiologic images 

is an active research topic. Table 4 provides details of 

research studies developed using the same dataset. 

Kai et al. [31] proposed the swin-transformerv2-UNet 

(S2UNet) model. The S2Unet model achieved 

73.26% DC and 58.30% IoU on the test set. Inan et al. 

[32] proposed a U-Net and VGG-16 based method for 

classification and segmentation of benign and 

malignant tumor areas on ultrasound images. Simple 

Linear Iterative Clustering (SLIC) algorithm was 

applied to the dataset samples in the preprocessing 

stages. The proposed model was trained for 300 

epochs and achieved a DC of 63.40% in the test phase. 

Bal-Ghaoui et al. [33] proposed a DenseNet-121 

based U-Net model for automatic segmentation of 

breast cancer lesions. This model achieved a DC of 

73.70%. Azam et al. [34] proposed the Efficient-Net 

based Atrous Spatial Pyramid Pooling (Efficient-Net 

ASPP) model for breast cancer segmentation. Only 

210 malignant samples were used in the training and 

testing processes of the model consisting of 

EfficientNetV2B3 backbone. The proposed model 

achieved 62.00% DC on 42 test images. 

 

Table 4. Comparison of studies using the same dataset 

Study Year Model Fixed Input 

Size 

Number of Classes Performance 

Kai et al. [31] 2022 S2UNet Yes 3 (benign, malignant, 

background) 

IoU=58.30% 

DC=73.26% 

Inan et al. [32] 2022 U-Net Yes 3 (benign, malignant, 

background) 

DC=63.40% 

Bal-Ghaoui et al. 

[33] 

2023 DenseNet-

121 U-Net 

Yes 3 (benign, malignant, 

background) 

DC=73.70% 

Azam et al. [34] 2023 Efficient-

Net ASPP 

Yes 2 (malignant, 

background) 

DC=62.00% 

The proposed 

study 

2023 ResNext-50  

U-Net 

No 3 (benign, malignant, 

background) 

IoU=73.17% 

DC=83.42% 
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In this study, a pre-trained ResNext-50 

based U-Net model is used for automatic 

segmentation of benign and malignant tumor areas 

from ultrasound images. The model was able to 

predict three different classes of pixel values in its 

output and achieved 73.17% test IoU. Compared to 

the studies listed in Table 4, we obtained higher 

performance rates. In addition, the constraint of 

processing on fixed resolution images, which is 

included in other studies, is not included in our 

study. Thus, our model is capable of predicting on 

input images of any resolution and has a wider 

scope compared to other studies. The advantages of 

our explainable model can be summarized as 

follows: 

 Since the ResNext-50 model was pre-

trained on large datasets, it performed well 

on the tumor segmentation problem with a 

low training cost. 

 The proposed method has an end-to-end 

CNN architecture and can perform 

segmentation without any manual feature 

extraction. 

 In clinical settings, experts can effortlessly 

utilize the proposed model, facilitating 

easy interpretation and understanding of 

the results. 

 Due to its flexible structure, it can be fine-

tuned with datasets of varying resolutions 

and effectively employed in diverse tasks. 

The limitations of our study are outlined as follows. 

The dataset used in the study is a publicly available 

dataset with unbalanced distribution. The 

performance of the study on images in different 

formats for integration into real-time applications 

has not been verified. In future studies, the number 

of dataset samples will be increased by 

collaborating with clinical radiologists. 

Optimization studies will be carried out on the 

hyper parameters of the model. 

 

5. Conclusions 

 

Detection of benign and malignant tumors is a vital 

step in the accurate diagnosis of breast cancer. 

Current detection methods are time-consuming and 

error-prone due to human factors. Detection of 

breast cancer cells using artificial intelligence 

techniques is an active area of research. Studies 

using CNN-based classifier models achieve high 

accuracy. However, due to the black box structure 

of the models, the pixels they focus on in their 

predictions are not explained. This creates a lack of 

confidence in the clinical use of classifier models. 

This study proposes to perform pixel-based 

segmentation of breast cancer tumors using 

ResNext-50 based U-Net model. The proposed 

method includes image cropping and image 

merging functions that segment the size of the input 

images into 256×256 pixel patches and reassemble 

them after performing model predictions on these 

images. A mean IoU value of 73.17% was obtained 

on the test images. Although the proposed method 

is only applied on ultrasound images, it can be 

easily fine-tuned for different types of radiological 

imaging such as mammography. In the future, we 

plan to expand the dataset and process data from 

different devices with the support of an expert 

radiologist. The proposed method can be tested to 

reduce the hardware requirements for segmentation 

of high-resolution radiological images. 
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