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Abstract

The concept of quasilinear space is a field that needs to be matured, the foundations of
which were laid by S. M. Aseev's published work in 1986. The simplest nonlinear quasi linear
space example is the set P which is a class of closed intervals of real numbers. In this study, it
was given an interval-valued sequence space using the Cesaro limitation method's matrix domain.
Also, its quasilinear space structure, some topological characteristics, and some inclusion

relations were examined.

Keywords: Quasilinear Space; Interval Valued Sequence; Hausdorff Metric; Cesaro

Convergence.

Aralik Degerli Cesaro Yakinsak Diziler Uzay: Uzerine
Oz
Quasilineer uzay kavrami, temelleri S. M. Aseev'in 1986 yilinda yayinlanan ¢alismasiyla
atilan, olgunlasmas1 gereken bir alandir. Lineer olmayan Quasilineer uzayin en basit 6rnegi,
gercek sayilarin kapali araliklar sinifi olan P kiimesidir. Bu c¢alismada Cesaro limitleme

yonteminin matris etki alani kullanilarak aralik degerli bir dizi uzay1 verildi. Ayrica bu uzayin

quasilineer uzay yapisi, bazi topolojik 6zellikleri ve bazi1 kapsama iliskileri incelendi.

! Corresponding Author DOLI: 10.37094/adyujsci. 1296930 L@ﬁ




Kiling & Yildirim (2023) ADYU J SCI, 13(1&2),1-17
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yakinsaklik.

1. Introduction

Aseev [13] introduced the concept of quasilinear spaces in 1986, which generalized linear
spaces. The partial order relation he used in the definition made it easy to give a consistent
response to some basic concepts and results of linear algebra. His study has also inspired the
presentation of many studies on set valued analysis [14], set differential equations [15], fuzzy
quasilinear spaces [16]. Yilmaz has many studies on quasilinear spaces and has made important

contributions to the literature [17, 18, 24-31].

After Zadeh [1] introduced the concept of fuzzy set to the literature, interval numbers and
fuzzy numbers have also been used in the construction of mathematical structures. One of these
structures is sequence spaces. Interval arithmetic, which was founded by Dwyer [2], was further
developed by Moore [3, 4]. Chiao introduced sequence of interval numbers and defined the usual

convergence of sequence interval numbers [23]. Some other studies on this topic: [12], [13].

Some studies in which fuzzy sequence spaces are defined and some of their properties are

examined [6-11, 20]:

In this paper, we introduce interval valued Cesaro convergent sequence spaces and discuss

some of their properties.

2. Preliminaries

Throughout this study, N, R and C will represent the set of natural, real and complex
numbers, respectively. Closed interval is a subset of the real numbers {x € R: D < x < D} and
the interval D is denoted as D = [D, D], where D and D are the left and right endpoints of an
interval D, respectively [5]. Although other types of intervals (open, half-open) appear in

mathematics, our focus will be on closed intervals. The interval term in this study refers to a

closed interval.

D is said to be degenerate, if D = D. An interval of this type contains a single real number

d, [5].

A closed subset of real numbers is an interval number. It is denoted as a set of all real

valued interval numbers by P in this study. That is, each element of P is D, represented as

D={xeR:D<x<D} (1)
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The set of all real valued interval numbers P is metric space with the metric h called the

hausdorff metric, [5] where h is defined as
h(D1, D) = max {|Dy - Dy|, Dy = Dy . @

It is easily obtained that P is complete metric space with the function h. The usual metric of R is

obtained when D, and D, are degenerate intervals.

Also, the set of all real-valued interval numbers P is the normed space with the norm

function defined [5]:
IDllp = suplltly, t€D, DeP, ltlg=Iltl

Let us now go over Aseev's [13] definition of a quasilinear space and some of its basic

properties.

The operations of addition, scalar multiplication, and a partial order relation on the set P of

intervals are defined as follows:
ForallU,VEP,U=[UU], V=[V,V]and 1 € R,
U+V=[0U]|+[VV]=[U+V,U+V]

_ AU, AU], if 1=0,
/1U=/1[Q,U]={[ = ] if
[2U,2U], if 1<,
Usvel|uu]clyV]

Let us continue by defining quasilinear space.

Definition 1: [13] When the addition, scalar multiplication, and partial order relation

defined on a set X satisfy the following conditions, X is called quasilinear space:

1) usu,

i) usw,ifusvandv=sw,

1i1) u=vifusvand v<u,

iv) ut+v=v+uy,

v) u+w+w)=@wW+uw)+w,

vi) There is a 8 element of X that satisfies x + 6 = x,

vii) w.(Au) = (u. Mu,
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viii)  w.(u+v)=pu+uv,

1X) l.u=u,

X) 0u=2¢,

Xi) w+Duspu+dv,

xii) ut+tvsw+eoifuswandv < ¢,

xili) puspvifuso,
where for all u,v,w,p € X and u, 1 € R.
In this study, quasilinear space is abbreviated as QLS.

When we use ' = "’ as a partial order relation, then the QLS transforms into a linear space.

The set of all closed intervals of real numbers is a famous understandable example of a non-linear

QLS.

Definition 2: [13] A norm is a n function defined from an X QLS to R that satisfies the

following conditions, in this case X is called a normed quasilinear space. That is n: X = R,
For all u,v € X and p scalar,

i. n(w>0ifu+0
ii. n(u+v)<n@)+n),
ii.  n(pu) = lun@),
iv. n(u)<n),if u<o,
v.  For any positive number &, If X has an ugs element that satisfies n(ugs) < § and, u < v +

ugs thenu < v.

Now let us define definition of the concept of interval number sequence.

An interval number sequence is a function whose domain set is N, and the range set is the

set of closed intervals P. That is, the function f defined as follows:
f:N->P,  f(k)= (D),
is called an interval number sequence, where D), = [D ,Bk], for each k, and D < Dy, [12].

The class of all interval sequences will be denoted by w(P) in this study.

w(P) ={(Dy):k € N, D, € P},
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The space w(P) is a quasilinear space with the following operations defined on interval

term sequences: For all U,V € w(P),
U= Uy = (U, U], [U;, U], e, [Ui, U], )
V=)=Vl V.] . W Vil )
U+V = ([Uk+ Y U + Vi) 3)

A = A([U, Ui]) = (A[Ux, T

A ﬁ]_{[ag,aﬁ], 2=0 @
W], a<o
UV e [U Ui € [V Vil ®)

The following is a definition of the convergence of interval number sequences, [23]:

Let (Ug) be a sequence of interval numbers and U, be an interval number. If there is a
ko = ko(¢) € N for which the inequality h(Uy, Uy) < € is provided for all ¢ > 0 and for all

k > kg, then the sequence (Uy) is said to be convergent to Uy. This convergence is displayed

as

ll}l;n Uk = UO or (Uk) - UO' (k - OO)I
where the limit is taken on the Haussdorff metric h given by equation 2.

We can conclude that Ilim Up=Uy & limU, = U, ve Ilim U =1U,.

k—oo

: : 11
For example, let us consider the interval number sequence (Uy) = [—m,m]. If we

examine the convergence of this sequence of intervals, we get that

, . 101 . .
Ill_{l;lon = ;ll—{r(}o —m,m] = [0,0] = 6. This means that the sequence (Uj) is convergent to

the interval number [0,0] = 6.

The spaces of null, convergent, and bounded sequences of interval numbers are defined

as follows, respectively:

P, = {(Uk) € w(P): lilzn U =[0,0] = 9}'
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P.= {W) € wP)limUy = Uy, Uy € P},

P, ={woe wey sup{|ul T} < oo}

These spaces are complete metric spaces with the function d defined as follows for each

U and V sequence taken from these spaces: [12].
d(Uy, Vi) = sup{mazx{|Uy — Vi, [Ux = Vie|

An interval valued sequence is Cesaro convergent to V € P if and only if

h(% R=1 U, V) > 0 forn — oo,

3. Main Results

C;(1) and C; (1) represent the spaces of interval valued Cesaro convergent sequences

and interval valued Cesaro null convergent sequences, respectively, in this study. That is,

Ci(1) = {(Ui) € w(P) ¢ lim h (+ 7 [Us, U], [V, V]) = 0, for some [v,V] € P}

n
1 _
Ciy(1) = {(U) Ew(P) : lim h (; >[0Tl [0.0]> = 0}
k=1
Now let us show that this set is well defined, that is, it has at least one element.

For instance, the sequence ([—1, %]) belongs to the set C;(1). Really it can be easily seen that

Therefore C;(1) # @.

Theorem 1: The space C;(1) is a metric space with the function d defined as
1gn lyn 7. _7
d(U,V) = supfmax (> ¥, |U; — Vi, = S, |U; - Vil b (6)
n
Proof: i) Forall U,V € C;(1) ,when U # V, it is easy to see that d(U,V) > 0,

Letus prove that U =V & d(U,V) = 0.
U=V o U; =V, foreachi €N,

& U; =V;and U; = V;, foreach i € N,



Kiling & Yildirim (2023) ADYU J SCI, 13(1&2),1-17

From here
|U; — V| =0,and |U; = V| =0 & d(U,V) =0

ii) It is clear that d(U,V) = d(V,U)
iii) d(U,V) = sup {max {%Z?ﬂ |Qi - E| ,% o - Vi|}}
n
1on leon I 5 = , 3
=sup {max {;Zi=1|gi ~Vi—Zi+Zi|, - XU - Vi Zi + Zil}}
n
< sup fmax (; 32,10 - 2]+ |2 - Vi) 530, (T - Zi] + |2 - Vi)
=sup {max (A 5L,(10; - 2] 10 - Z) +2 212 - Vil 12~ Vi)

=sup {max {%Z?ﬂ(lgi -zl |U; - Z’D} +max {% |z - vl [z - Vll)}}

< s {m L (217 - zn}} _— {max YRR vin}}

i=1 i=1

=dU,Z)+d(Z,V)

Thus, it can be written that

dU,v)<dU,zZ)+d(Z,V).

That is, d is a metric.

Theorem 2: The spaces (C;(1),d), (C,O (D), d) are complete metric spaces with the metric
d defined in (6).

Proof: Consider (U™) as a Cauchy sequence in C;(1) space. We get

dlUur,u™) = 0,(r,m - o),

where U™ = (Uy) = (U], U3, ...,Ug,...), U™ = (U") and Uy = [Q,f,ﬁ;]. From here, for

(r,m - o)

1 lon |57 7™M
sup {max {;Zﬁﬂlgkr - U™ v~ Zie1 |Uk - Uy }} - 0.
n
It means that for each n,

max (LS |0 - 0 A5 [T - T} = 0. Grom > o0)
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Hence, for each n,
1 r m 1 —T —m
2ypa|u) - U - 0 and 255, [T - T | - o.

. oo}
This shows us that cesaro transform of the sequences of real numbers (ka)mzland

—m\ ®
(U k ) is the cauchy sequence. If the space of Cesaro convergent classical real number
m=

sequences is denoted by c(1), we know that this sequence space is complete. Therefore, suppose

—m J—
that the sequences (ka) and (U k) are Cesaro convergent to the numbers U, and Uy,

—_—m J—
respectively. Since we know that for all k, U,™ < Uy , we write Uy, < Uy. Take into account

the interval U = [Qk,ﬁk] thus produced. Then, we get d(U",U™) — d(U,U™), for r - co.

—m J—
Because the sequences (ka) and (U k ) are Cesaro convergent to the numbers U, and Uy,

respectively, we can say that for all positive numbers &; and &,, there are the numbers my (&)

and mg(&,) such that

1@n m
22k |0 - U, e

when m > m(&;) and

lon |77 =

— k=1 |Uk = Uy | < &,
when m > mg(&y).
Let us say € to the maximum of &; and &, numbers, that is ¢ = max{e;, €,}. In this case, for

m > max{mg(&1), mo(ez)},
1yn m|lyn |77 Tk
max {* i |Ux - U™ 2 20 [Ue - Ui [} < & %)

If the course of the proof is followed, it is seen that the (7) inequality is provided for each n. It

means that
d(U,U™) = sup {max {i|gk - kal,izzzl |ﬁk —521”} <e.
n

This indicates that it is U € C;(1). Thus, it has completed the proof.

Theorem 3: The spaces P, and C;(1) are not linear isomorphic.
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Proof: To demonstrate that two spaces are linear isomorphic, we must demonstrate the

existence of a one-to-one and onto a linear transformation between them.

Let us define the transform T, T: P, = C 1(1),

U-TW) =V, V==), W)= %Z[gk,ﬁk] (n €N).

Forall X = (Xy) = [Xy, X ] and U = (U}) = [Ux, U] € B.,

n
1 _ _
T+ U) == > X+ U T + T
k=1

=TX)+T{)
T(a.X) = ~¥i_s[a Xp aXi] = @ G Ipo [ X Xi]) = @.T(X), (a € R).
So, the transform T is linear.
Let us investigate the T transform's one-to-one. For this purpose, let us assume
T(X) =T(U). Then,we getT(X) —T(U) =80

where 8 = [0,0]. T(X — U) = 6 is obtained, because the T transform is linear.

1 _ _
T = V) == (XXl = [0 Te) = [0,0],
k=1

1 — —_—
= =~ Yk-1([Xk = Ui, Xy — Ux| = [0,01.
This requires X = Uy, and X, = Uy, for all k € N. This means [Kk')_(k] * [Qk,ﬁk].
So, T is not 1: 1. Therefore, the spaces P, and C;(1) are not linear isomorphic.

Theorem 4: An interval valued convergent sequence is also Cesaro convergent.

Proof: Let us assume that the sequence X = (X,,) converges to an element Y = [¥,Y] in

P.Thatis lim h(X,,Y) = 0. We get from here that,
n—-oo

lim max{|X, —¥[,| X, —Y|}=0



Kiling & Yildirim (2023) ADYU J SCI, 13(1&2),1-17

This means that lim |X,, — Y| =0 ve hm | X, — Y| = 0. Thus, the real sequences(X,,) and

n—-oo
(X,) are convergent. We know that sequences of convergent real numbers are Cesaro

convergent.

Let us assume that the sequences (Kn) and (X,,) of real numbers Cesaro converge to U

and U. Where U and U are real numbers. Since foralln € N, X,, < X,, , we know that lim X,, <
n—-oo

lim )_(n. From here, we have U < U. In addition, since the Cesaro limit and the limit of a
n—-oco

convergent sequence in sequences with real terms are equal,

lim h([X, X,] [U,U]) = lim (max{|X -Ul,| X, -Ulh

n-—-oo

= lim (max{|X, — Y|.| X, = Y[} (n - .
n—oco

It means that the sequence X = (X,,) Cesaro convergestoY =[VY,Y].

Consequently, we can say that the sequence space C;(1) contains the sequence space P..

That s, P, c C;(1). Similarly, PC0 c C;,(1) inclusion relation is also valid.

Example 1: Consider the following sequence (X,) = ([1 +%,3]). We see that it

converges to [1,3]. We can prove easily. Really,
h([1+2,3],[13]) = max {[1+2-1|,13 - 31}

=max{%,0}=%—> 0, (n = o0).

Now, let us investigate Cesaro convergence. We must demonstrate that

h(%ZXn , [1,3]) -0, (n- o).
h(—ZXn,13 %Zn: +—3 1,[1,3])

1 1 1
= h(; (1+1,3]1+[1+ 5,3] + 41+ ;,3]), [1,3D

_h(([1 13]+[1 i§]+...+[1 L3

n n'n 2n’n

10
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P . 1
= A([1+—(1 45+ +-),3],[1,3])

1 1 1
=max{|1+—(1+—+---+—)—1|,|3—3|}
n 2 n

1(1+1+ +1) 0
= — -4t =) > — 00
n 2 n (n )

So, the proof is completed.

Now, let us see with an example that an interval sequence that is divergent can be
convergent according to the Hausdorff metric in the Cesaro sense.

Example 2: Although the sequence X = (X,) = ([-1,0],[0,1],[-1,0],[0,1],...) is
divergent, it is Cesaro convergent to [— %,%] according to the Hausdorff metric. Let us examine

the Cesaro convergence depending on n is even or odd which stamps the terms of the sequence.

n+1 n ]

If n is an number, then X =[——
s an odd number, then X5n4 2n+1’ 2n+1

Let us try to demonstrate that  lim h( X414, [— %,%]) = 0.
n—-oo

. 1 1. . _ n+1 n _l l
711—{120 h(Xzn+1, [_E’ED - ,Pli‘oh( 2n+1'2n+1]'[ 2’2])

i n+1 1 | | n 1|
= fmmaxt|=y 7 - Oy 2P

i {| n+1+1|| n 1}
= fmman= o o1t Pl 2l
If here the maximum expression is |— ntl oy l|, we get lim [— LLE N l| = 0.

2n+1 2 n-oo 2n+1 2
If here the maximum expression is | — l|, then lim |—— — l| = 0.
2n+1 2 n-oo 12n+1 2

Let us now consider, the case where n is an even number. In this case, since

lim h (XZn, [— L 1]): lim max {|— % + %| , E - l|} = lim max{0,0} = 0.

n—-oo 2’2 n—oo 2 n—-oo

As aresult, the goal is accomplished.

11
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Thus, we gave an example of an interval sequence that is Cesaro convergent even though

it is divergent. This indicates that the coverage of P, c C;(1) is certain.

Theorem 5: The space C;(1) is a subspace of P, _

Proof: We will show that when U = (Uy) € C;(1), U is the element of P, _

Ue C1(1) < lim h(%Z}%:l Ug,V) =0, forany V € P.
n—oo

d

[ERN

i - ﬁk”) AR T+ 4 0 D) 7)),

:h<[g1 4+ Uy, U1+ +U][V_]>

Slr—\

1 1, — —
= max{h(g1 + e+ Uy) —K|,|£(U1 ot Uy) — V|} -0, (n - )
1 17— - =
o U+ +U) -V 0and (T + 4+ T,) - 7| 50, (n> o).
From here the sequences (Uy) and (Uy) are Cesaro convergent in R. Therefore, they are
also bounded. Since forall k € N, U, < Uy, the interval [Uy, U] is bounded and we get

that U = (Uy) belongs to P, . We have, the space C;(1) is covered by P, _
1 1,— — —
xec,() e h([; (X1 4ot Xn),;(x1 4ot Xn)] Ju,u]) - o(n - ),
1, — —

Y € C(1) & h([ (Y1 +oty, ) —(f Yn)],[z,v]) - 0(n = ),

where U,V € P. Now, let us show that for X,Y € C;(1), X + Y € C;(1). Since
1 11— S — - —

h([£(£+£+~-+ﬁ+&),(;(&+Y1+---+Xn+Yn)],[Q+K,U+V])

“h(ly (Ka+ o+ Xy B+ o+ K]+ [ (Gt o+ V) (+ -+ T, [V, 0]+

[V,V]) = 0 (forn — o), we get
h([%(ﬁ-l—ﬁ-l—"'4‘&"‘&),(%()714‘?1"'"'+X_n+Y_n)]'[ +V,U+V]) -0,

soX+Y € ().

For X € C;(1) and A € R, let us show that A X € C;(1)

12
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[AX,2X], if2=0
[1X,2X], if2<0

AX = A[x,X] ={

Since X € ;(1) & h([2(Xy+ -+ X,), > (X5 + -+ X,)|,[1,T]) - 0(n > o0),
(U € C;(1)). If1 = 0, AX = [AX,AX]. We have

1 1, _ _
h([Z (2%, + -+ Aﬁ),;(le +oet AXn)] [ AU, ATT)
= hQL (6 + 4 X (4 -+ B, A1, T
= (> (X 4+ %) 2 (X5 + -+ X)], [LT]) > 0(for n - ).
If 1 < 0,AX = [AX, 1X]. We have

1, 1 _
h([;(/le 4+t zxn),g(,ui + -+ AX)], [ AU, AU]
= h ([ (et + %) S D+ 4 X)) D[R D)

1 1 _ _

= (DA Xy + -+ Xp), — Xy + -+ X)] [U U]) = 0(n = o)

We have shown that when X € C;(1),1X € C,;(1).

Theorem 6: The space C;(1) is a QLS with the operations given by (3), (4) and the partial

order relation given by (5).
Proof: Forall U,V,Z € C;(1) and A € R also, for k € N,

1) It is trivial that U < U.

ii) WhenU <V andV < Z forall 1 < k < oo, we have Uy € V), and V, € Z, due
to (5). Since Uy, Vi, Z, € P and P is a QLS, it becomes U;, € Zj, for all 1 < k < oo. Because
of (5), U< Z.

iii) Let U<V and V < U. In this case, forall 1 < k < oo, Uy, €V}, and V;, € U,.
Since Uy, Vi € P, and P is a QLS, equality U, = Vj is obtained. So, U = V.

It can be easily seen that these two equations are satisfied:

iv) U+V=V+U,

v) U+(WV+2)=U+V)+7Z,

13
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vi) There is @ = (0p,0p, ..., 0p, ...) € C;(1) to be provided U + 6 = U, where
GP = 0

vii) It is very easy to see that

A (B.U)=A.(B.U,B.Uy, ..., BU,, ...)
= (AB.Uy, AB.Uy, ..., ABU,, ...) = (AB). U,
viii) AU+ V) =AU, +V,, Uy, +V,, ., U+ 1V, .0)
= AUy + AV, AU, + AV, .. AU, + AU, ...)
= AU + AV,
ix) 1.U =U,
X) 0.U =0.(Uy, Uy, ...,Uy,,...) = (0.Uy,0.Uy, ...,0.U,, ...) = (0,0,...0) = 06,

xi) A+B).U=A+p).(U, Uy, .., Uy, ...)
=((A+B).U, A+ B).Uy, ..., A+ B).Uy, ...),

and it is obtained that
AU+ B.U =AUy, Uy, ... Uy, ..) + B.(Uy, Uy, oo, Upy .2)
= (AU, + B Uy AUy + B.Ugy s, LUy + B.Uy, ...
Forall 1 < k < oo, when U € C;(1), since Uy, V), € P and P is a QLS, we have
A+ B).U, € AU+ B.Uy,

and thus, it is obtained that (A + §).U € .U + .U,

xii) IfU<Vand Z<W,for1 <k < oo, then U, €V}, and Z;, € Wy. It is founded
that
Uk+Zk c Vk+Wk,andU+Z< V+W
xiii)) IfU < V,since Uy € Vi, ford € R,wegetAd. U, & A. V. Fromhere .U < 1.V
obtained.
So, C;(1) is a quasilinear space with operations (3), (4) and (5).

Theorem 7: The space C;(1) is a normed quasilinear space with the function n defined

as

n:C; (1) » R, n(U) = S%p”Uk”P,

where ||Up|lp = max{|gk|, |ﬁk|}.
Proof: Forall U,V € C;(1) and BeR,

i) It is clear that n(U) = 0.
ii) n(U) = 0 & supllUillp = 0, (k € N)
k

14



Kiling & Yildirim (2023) ADYU J SCI, 13(1&2),1-17

©Forallk €N, ||Ugll, =0,
o U=26.
iii) n(U+V)= szplluk + Villp, (k€N)
< S%P{”Ukllp + Vil p3,

= Sl}’ip{”Uk”P} + S?;P{IIVkllp}

=n(U) + n(V),

iv)  n(BU) = szpllﬂUkllp, (k € N)
B S?;p{lﬁIIIUkllp}, (k €N),
= |ﬁ|-51,':p{”Uk”P}: (k € N)

= |BIn(W).
V) Let us assume that UV. This implies it to be U, € V., and [|Ugllp < ||Vilp for
each k € N, Uy, V,, € P, since P is a normed QLS. From here it is obtained

supl|Ullp < sup||Villp, and it means n(U) < n(V).
k k

vi) Let § > 0 be given and let U,V € C;(1). Assume that there exists an element
Us € C;(1) such that U < V + Ugs and n(Us) < §. To verify the last case, we
must show that UV in these conditions. From the hypothesis, we get U, € Vj, +

Us, and sup”U,gk”P < § for each positive integer k. Since P is a normed QLS,
k

we can say U, € V, for each positive integer k. Hence, this means U<V. This

completes the proof.

4. Conclusion

We define an interval valued space and then present some topological characteristics and
inclusion relations of this space. By demonstrating that, this sequence space has the quasilinear
space structure described by Aseev, we also made a contribution to the study of quasilinear spaces.

The paper serves as a guide for future research in a related field.
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