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Abstract: How do these primitive tiny organisms' hierarchy operate? The answer 

is simple: by communicating. Yes, bacteria talk, and it’s called: Quorum Sensing 

System (QS). QS is a phenomenon where bacteria tinychat and arrange their moves 

via the accumulation of signaling molecules. The cells respond to this stimulus 

when the cut-off value concentration of molecules is achieved. This phenomenon 

is widespreadly visible in the bacteria world. Bacteria never move solo and would 

need to gather up in critical mass because of secrete efficient toxins to be lethal. N-

Acyl Homoserine Lactones (AHLs): Intercellular signaling molecules used by 

Gram-negative bacteria (Gram-) to monitor their critical mass density in QS 

controlling of critic gene expression. AHL signals are synthesized by LuxI proteins. 

AHLs are vital interbacterial signaling molecules used by bacteria to check their 

dependent bacteria density. Auto-inducing peptides (AIPs): signaling molecules 

involved in intercellular communication in Gram-positive bacteria (Gram+). 

Peptides are exported by dedicated systems, post-translationally modified and 

eventually sensed by other bacteria cells via membrane-located receptors that are 

part of a two-component system. AI-2 (Autoinducer-2): signaling molecule used 

by interspecies bacteria communication. This molecule chemically identified 

furanosylborate diester synthesized by LuxS proteins. Also, it's a universal signal 

because it carries out interspecies communication. The aim of this review is to 

summarize the AHL, AIPs, AI-2 bacterial signal molecules, QS systems target 

genes, effective in the procaryotic world, and the micro-social lifestyle of bacteria. 
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1. INTRODUCTION 

Tinychat comes true via N-Acyl Homoserine Lactones (AHL, N-AHLs or AHLs) signal 

molecules managed by a Quorum Sensing System (QS). QS is the coordination of bacterial 

group movies based on cell density. Thanks to this attitude, bacterial tinychats are established. 

As a result of tinychat, serious big consequences such as diseases occur (Parveen & Cornell, 

2011; Winsberg, 2022). The properties that a real QS molecule should have, unlike a metabolite, 

are summarized as follows: I. Production of the QS molecule occurs at different phases of 

reproduction, under special conditions changes. II. The QS molecule agglomerates 

extracellularly and is detected whereby specific receptors. III. Accumulation of the QS 

molecule elicits a planned response when it reaches a critical threshold. IV. The cellular 
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response elicited by the QS molecule is much broader than metabolizing or detoxifying the QS 

molecule. While many metabolites show the first three of these four features, the fourth feature 

is a feature that a QS molecule must have (Winzer et al., 2002).  

Gram-negative bacteria (Gram-) use AHL as their command language to coordinate 

population behavior during invasion and colonization of higher organisms. AHL is synthesized 

from precursors by a synthase protein, “LuxI” and once they have reached a certain cut-off 

value concentration, they interact with a transcriptional activating “LuxR” protein to induce 

target gene expression (Fuqua et al., 1996). So, QS operates that lets bacteria sense and answer 

target genes depending on their bacteria density. (Eberl et al., 1996; Pütz et al., 2022). In Gram-

positive bacteria (Gram+), the instrument of the communication system functions via 

Autoinducing Peptide (AIPs) (Sahreen et al., 2022). In interspecies, the instrument of 

communication is via Autoinducer-2 (AI-2) (Liu et al., 2022). Bacteria become more prepotent 

by communicating. They act simultaneously, perform critical gene expressions such as 

virulence, and perform gene transfer. They coordinate such multiple social behaviors through 

signaling molecules. In fact, different types of bacteria can communicate with each other thanks 

to signal molecules in crosstalk. 

The aim of this review is to summarize the various AHL, AIPs, and AI-2 bacterial signal 

molecules currently available, QS system management prokaryotic world, and micro-social 

lifestyle of bacteria.  

2. SIGNALING MOLECULES 

2.1. AHL Molecules Structure 

The main structural components of AHL (Figure 1) are hydrophilic sections of homoserine 

lactone ring (S-adenosylmethionine) and central amide group, as well as hydrophobic section 

strain-specific side hydrocarbon chain with varieties in length and level of oxygenation with a 

3-oxo group. Acyl chain generally ranges from 4 to 18 carbons (Marin et al., 2007). In bacterial 

signaling, AHL is produced and released by bacteria cells. AHLs produced by different bacteria 

differ in the length of the R-group sidechain (Kumari, 2006).  In QS, LuxI protein is synthesized 

by AHL. AHL can pass through the cell membrane down a gradient to environmental space. 

When molecule concentration reaches the threshold value, cognate LuxR protein binds to AHL. 

So, AHL directs target gene transcription (von Rad et al., 2008). 

Figure 1. AHLs structure used by Gram- (Konai et al., 2018).  

 

2.2. AIPs Peptide Signaling Molecules Structure  

AIPs are characterized as AIP I-II-III-IV (Figure 2). Peptides may have differences in amino 

acid sequence; however, all of them possess an increased hydrophobicity from their N- to C-

terminal end in peptide structure. At the end of the sequence to the C-terminal positions, AIPs 

are found to have amino acids with hydrophobic side chains (Mayville et al. 1999; MDowell et 

al. 2001; Yang et al. 2016). AIP linear peptide analogs or hydrolysis of the thioester moiety 

inactivates its functions molecule. Thioester macrocyclic ring is an ester moiety that was found 

to inactivate the signaling. Upon removal of N-terminal exocyclic structures, AIP loses 

signaling (Konai et al., 2018). 
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Figure 2. AIPs structure used by Gram+ (Konai et al., 2018). 

 

2.3. AI-2 Molecules Structure 

AI-2 is a set of interconverting molecules derived from 4,5-dihydroxy 2,3- pentanedione (DPD) 

(Figure 3) (Qiao et al., 2022). LuxS is a synthase enzyme of DPD (Pereira et al. 2013). AI-2 

synthesis is start with SAM (Federle & Bassler 2003). Different forms of DPD act as AI-2 for 

interbacteria. AI-2's chemical nature structure is the same for many bacteria species. This 

suggests that AI-2 is used for inter-species communication (crosstalk) to detect other bacteria 

(Miller et al. 2004). In AI-2-based QS, signal receive, and transduction are conducted by a two-

component pathway. The first component consists of LuxP and LuxQ while the second 

component constitutes phosphotransferase LuxU and cytoplasmic response LuxO. There exist 

LuxPQ complexes with symmetric heterotetramer in AI-2. Upon binding with AI-2, the 

tetramer undergoes a change. This change prevents the phosphorylation of the cytoplasmic 

proteins, LuxU and LuxO, which terminates the expression of genes. Finally, LuxR is produced 

(Konai et al., 2018).  

Significant works on the three-dimensional structures of proteins involved in QS first came into 

light in 2001 by determining the crystal structures of three LuxS orthologs with the help of X-

ray crystallography. This was closely followed by determination of the crystal structure of the 

receptor LuxP of Vibrio harveyi with its inducer AI-2 (which is one of the few biomolecules 

containing boron) bound to it. AI-2 signalling is conserved among many bacterial species, 

including Escherichia coli, the model organism (Lewis et al., 2001; Chen et al., 2002). A 

database of QS peptides is existing “Quorumpeps” (Wynendaele et al., 2013; Wynendaele et 

al., 2015). 

 

 

 

 

 

 

 



Int. J. Sec. Metabolite, Vol. 10, No. 4, (2023) pp. 590-604 

593 

Figure 3. AI-2 and other signal molecules used by bacteria (Qiao et al., 2022). 

 

3. COMMUNICATION INSTRUMENTS IN BACTERIA 

Briefly, AHL is produced by LuxI-type and by LuxR-type in Gram. The second mechanism 

involves AIPs in Gram+ which are sensed by two-component systems. The final system is the 

AI-2 system which is common in both Gram- and Gram+ (Figure 4) (Brackman & Coeny, 2015). 

AIPs are often integral elements of a histidine kinase two-component signal transduction 

system. In this system, extracellular proteases process the secreted precursor-AIP into mature 

AIP. Kinase phosphorylates regulate gene transcription. This is called a two-component system 

(Rutherford & Bassler, 2012). AHLs are important “messenger” molecules involved in cellular 

communication of Gram- (Rutherford & Bassler, 2012). Usually, AHL does not need additional 

processing and binds directly to transcription factors to regulate gene expression (Bassler, 

1999). Communication instruments in bacteria are shown in Table 1. 

Figure 4. General structures of the selected QS signal molecules (LaSarre & Federle, 2013). 
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4. DISCOVERY of AHL, AIPs, AI-2 

Previously pathogenic bacteria were tested against 2 AHL monitor bacteria (Agrobacterium 

tumefaciens NT1 and Chromobacterium violaceum CV026) in a well-diffusion assay (Bruhn et 

al., 2005). However, currently for AHL extraction problem is components present in bacterial 

culture supernatants. Components are cell growth media and extracellular products produced 

by bacteria. To reduce extracellular products, a stationary bacteria growth phase is 

recommended at extraction. Liquid–liquid extraction (LLE) and solid-phase extraction (SPE) 

are commonly used methods to isolate AHL (Huang et al., 2020). Several methods have been 

developed for purification, detection and quantification of the AHLs. Methods have been 

developed for the detection of tinychat molecules. These methods are biosensors of HSLs, Thin-

layer chromatography (TLC) (Laj et al., 2022), Radiolabeled assay (Schaefer et al., 2018), 

High-performance liquid chromatography (HPLC) (Bao et al., 2022), Colorimetry (Jin et al., 

2020). For identification of AHL spectroscopic properties have been widely used to the 

characterization of QS molecule structures. Spectroscopic include Mass Spectrometry (MS) 

(Rosario et al., 2022), MS/MS, nuclear magnetic resonance spectroscopy (NMR) (Sundar et 

al., 2022), and infrared spectroscopy (IR) (Deepa et al., 2022). These methods are HPLC-MS 

(High-performance liquid chromatography-Mass spectrometry) and GC-MS (Gas 

chromatography-Mass spectrometry), Nano-LC-MS/MS (Frommberger et al., 2004), At-line 

coupling of UPLC (Ultra-high-pressure liquid chromatography) to chip-elctrospray-FTICR-

MS (Fourier-transform ion-cyclotron resonance mass spectrometry) (Li et al., 2007a), Capillary 

zone electrophoresis mass spectrometry (CZE–MS), Nuclear magnetic resonance (NMR) 

(Bainton et al., 1992), IR spectrometry (IR) (Wang et al., 2011). 
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Table 1. Bacteria possessing QS system target genes, signal molecules, structure, and function in talking via chemical languages. 

Strain 
Gram* 

staining 
Signal molecules Structure 

QS system  

target genes 
Function Reference 

Agrobacterium 

tumefaciens 
Gram- 

N-(3-oxooctanoyl)-L-

homoserine lactone (OOHL) 

 

traR-traI 
Factors for conjugal Ti 

plasmids transfer 

Zavilgelsky & 

Manukhov, (2001) 

Aeromonas 

hydrophila 
Gram- 

N-butanoyl-L-homoserine 

lactone (C4-HSL, BHL) 

 

luxI-luxR 

AhyI-AhyR 

Virulence, 

biofilm, 

hemolysis 

Filik, 2020 

Aeromonas 

salmonicidae 
Gram-  C4-HSL, BHL 

 

luxI-luxR 

AsaI-AsaR 
Exoprotease production 

Miller & Bassler, 

(2001) 

Bacillus subtilis Gram+ 
Competence and Sporulation 

Stimulating Factor (CSF) 
Glu-Arg-Gly-Met-Thr  

CSF adsorption,  

serious membrane damage, 

gene expression  

Huang et al. (2021) 

Candida 

albicans 
Yeast** 

 

Farnesol 

 

 

 

Tyrosol 

 

 

 

 

 

 

LuxS  Dimorphism, biofilm Kim & Yeon, (2018) 
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Phenylethanol 

 

 

 

Tryptophol 

 

 

Chromobacteri

um violaceum 
Gram- 

N-hexanoyl-L-homoserine 

lactone (C6-HSL, HHL) 
 

luxI-luxR 

CviI/CviR 

Violacein pigment 

production 

McClean et al.,  

(1997)  

Enterobacter 

agglomerans 
Gram- 3-oxo-C6-HSL 

 

 

 

luxI-luxR 

EagI/EagR 
Pheromone production Swift et al,. 1993 

Erwinia 

carotovora 
Gram- 

 C6-HSL, HHL 

 

 

 

N-(β-ketocaproyl)-L-

Homoserine lactone (3-Oxo-

C6-HSL) 

 

 

 

 

 

luxI-luxR 

Carbapenem antibiotic 

production 

 

 

 

 

 

 

 

Virulence 

Zavilgelsky & 

Manukhov, 2001 

 

 

 

 

Burr et al., 2006 
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E. coli Gram- 

AI-2 

 

 

 

 

 

 

3OC8HSL 

 

 

 

 

LuxS 

 

 

 

 

 

 

NA (Not applicable) - 

SdiA 

Cell division, 

chromosome replication,  

cell signaling, translational 

modification,  

pathogenesis 

mechanismsprotein 

 

 

 

 

 

Motility, acid resistance 

 

Soni et al., 2007 

 

 

 

 

 

 

Soares & Ahmer 

2011 

Pseudomonas 

aeruginosa 
Gram- 

 

 

C4-HSL, BHL 

 

 

 

N-(3-oxododecanoyl)-L-

homoserine lactone (OdDHL, 

3OC12-HSL) 

 

 

 

 

 

rhlI-rhlR  

 

 

 

  

 

lasI-lasR 

Virulence, 

secondary metabolites 

(rhamnolipids)  

 

 

 

Virulence (toxin A, elastase) 

Zavilgelsky & 

Manukhov, 2001 

Pseudomonas 

aureofaciens 
Gram-  C6-HSL, HHL 

 

LuxI-LuxR PhzI-PhzR 

Produces of exoproducts, 

including protease, 

phenazines, phenazine 

antibiotic biosynthesis  

 

 

Zhang & Pierson, 

2001 
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Staphylococcus 

aureus 
Gram+ 

Oligopeptide Autoinducers 

Peptides (AIPs) 

 

Agr Virulence Malone et al., 2007 

Vibrio 

anguillarum 
Gram- 3-oxo-C10-HSL (ODHL) 

 

LuxI-LuxR 

VanI/VanR 

Bioluminescence Violacein 

pigment production 
Milton et al. 1997 

Vibrio harveyi Gram- 

N-octanoyl-L-homoserine 

lactone (OHL), Autoinducer-2 

(AI-2) 

 

 

 

 

N-(3-hydroxybutanoyl)-L-

homoserine lactone (HBHL), 

AI-1 

 

 

 

4,5-dihydroxypentane-2,3-

dione (DPD) 

 

 

 

 

 

 

 

 

ainS-ainR  

 

 

 

 

 

 

luxL-luxM  

luxR-luxN 

 

 

 

 

 

luxS-luxQ  

Bioluminescence Geske, 2008 
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Vibrio fischeri Gram- 

N-(3-oxohexanoyl)-L-

homoserine lactone (OHHL), 

AI-1 
 

luxI-luxR Bioluminescence 
Zavilgelsky & 

Manukhov, 2001 

Yersinia ruckeri Gram- 

 

 

OOHL 

 

 

 

OHL 

 

 

 

 

 

 

 

 

luxI-luxR Virulence Bruhn et al., 2005 

*Gram staining is an assay applied only to bacteria. 

**C. albicans is yeast and has nothing to do with gram stain.
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5. DISCUSSION and CONCLUSION  

Interbacterial communication systems based on signaling molecules have been determined in 

pathogenic Gram- and Gram+ causing tough problems. The ability to mark bacterial 

communication at single-cell level in situ enables exploration of interbacterial communication, 

intercellular signal transduction, and QS, and it gives us a tremendous potential for studying 

the efficiency of communication systems in complex virulence systems scenarios (Andersen et 

al., 2001). Many species of microorganisms exhibit a social behavior. 

QS in prokaryotic biology refers to the ability of bacteria to sense information from other 

cells in the population when they reach a critical concentration. They communicate with each 

other through signal molecules they have produced, monitor whether they have reached a 

certain majority, and trigger critical gene expressions such as synthesis of virulence as soon as 

they reach a sufficient majority. Thus, by not stimulating the host's immune system 

prematurely, it creates a successful infection process (Thirunavukkarasu et al., 2023).  

Researchers have established “SigMol” (http://bioinfo.imtech.res.in/manojk/sigmol), a 

specialized repository of molecules in procaryotes. SigMol harbors information on QSSMs 

pertaining to different signaling systems namely AHL, AIPs, AI-2, and others. The database 

consists of 1382 entries of 182 peerless signal molecules from 215 microorganisms. SigMol 

encompasses biological (genes etc.) and chemical (IUPAC name, SMILES and structure etc.) 

properties of molecules (Rajput et al., 2016).  

By secreting chemical toxins, all bacteria by themselves would receive the signals and 

answer them by activating the transcription of virulent genes and changing their social behavior 

to become highly pathogenic. Bacteria possess an extraordinary repertoire for interbacterial 

communication and social movements.  

The discovery of communication molecules in the bacterial world attracts attention to fish 

disease control. Destroying AHL signal molecules, which are communication instruments, 

before they can occur the disease, brings up the concept of early diagnosis and in this case, it is 

aimed to era in prophylaxis. So, explaining to molecules in all detail will be an important step 

in diagnosis. 

The similarities between the signals used by bacteria and artificial neural networks are 

striking. Based on the finding that bacteria have many of the properties of a neural network, 

bacteria may have a low level of intelligence. Researchers have stated that billions of bacteria 

collectively carry out the same command in their experiment by putting bacteria into 

communication with each other with the program loaded in their DNA. Scientists state that 

billions of bacteria that can communicate with each other can be managed at the same time and 

directed to certain tasks. They point out that in the future, smart biological devices will also be 

reflected in daily life.  
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