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Highlights 

• This paper focuses on high-dimensional survival data analysis. 

• High-dimensional survival datasets were simulated. 

• Simulated survival datasets were analyzed by new and classical methods. 

• High performance was obtained on both survival time and 5-year survival prediction.  
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Abstract 

Mortality risks of important diseases such as cancer can be estimated using gene profiles which 

are high-dimensional data obtained from gene expression sequences. However, it is impossible 

to analyze high-dimensional data with classical techniques due to multicollinearity, time-

consuming processing load, and difficulty interpreting the results. For this purpose, extreme 

learning machine methods, which can solve regression and classification problems, have become 

one of the most preferred machine learning methods regarding fast data analysis and ease of 

application. The goal of this study is to compare estimation performance of risk score and short-

term survival with survival extreme learning machine methods, L2-penalty Cox regression, and 

supervised principal components analysis in generated high-dimensional survival data. The 

survival models have been evaluated by Harrell’s concordance index, integrated Brier score, F1 

score, kappa coefficient, the area under the curve, the area under precision-recall, accuracy, and 

Matthew’s correlation coefficient. Performances of risk score estimation and short-term survival 

prediction of the survival models for the censoring rates of 10%, 30%, 50% and 70% have been 

obtained in the range of 0.746-0.796, 0.739-0.798, 0.726-0.791, 0.708-0.784 for Harrell’s 

concordance index; 0.773-0.824, 0.772-0.824, 0.754-0.818, 0.739-0.808 for F1 score and 0.816-

0.867, 0.808-0.865, 0.788-0.863, 0.776-0.851 for area under curve. All results showed that 

survival extreme learning machine methods that allow analyzing high-dimensional survival data 

without the necessity of dimension reduction perform very competitive with the other popular 

classical methods used in the study. 
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1. INTRODUCTION 

 

Along with the developing technology, it has become easier to collect data and store it, which causes an 

increase in the number of data dimensions. The number of dimensions becomes such high that the data is 

called high dimensional since the number of the independent variables exceeds the number of observations. 

In the health field, especially gene expression datasets consisting of enormous information are high 

dimensional. However, there are some difficulties in extracting information from high-dimensional data, 

such as multicollinearity problems among independent variables, long analysis processes, and challenges 

in interpreting the results. Besides, classical statistical methods cannot perform high-dimensional data 

analysis due to some problems caused by their theoretical structures. For this reason, researchers focus on 

developing high-dimensional data analysis techniques for different kinds of data, such as time-to-event 

data. Accordingly, some modifications to the classical survival analysis models, dimension reduction 

techniques, or integration of specific classical survival analysis models and newly proposed methods have 
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been developed, such as L2-penalty Cox regression (Cox-L2), supervised principal components (SPC), and 

survival extreme learning machine (SELM) models; respectively [1-4]. Analyzing high-dimensional 

survival data with these methods is essential in determining risk factors affecting survival and, in general, 

the early diagnosis or estimation of 5-year, 10-year survival from significant diseases, such as cancer [5-

10]. Delen et al. [5] compared performance of the methods artificial neural networks (ANN), C5 decision 

tree, and logistic regression methods to predict 5-year survival from breast cancer. They used applied 10-

fold cross-validation on SEER breast cancer data and reported that C5 method reached the best 

classification accuracy of 93.62%. Dhillon and Singh [6] predicted 5-year survivability from breast cancer 

with SELM methods and reached at most 85% accuracy rate. Gitto et al. [7], in their long-term follow-up 

study, analyzed predictors of extra-hepatic non-skin cancer and reported 10-year survivability of the 

patients after they diagnosed as cancer. Li et al. [8] made a systematic review on the studies in which 5-

year breast cancer survivability prediction performed by machine learning methods. Lou et al. [9] 

performed a large prospective cohort study on prediction of 10-year survivability after breast cancer surgery 

by deep neural networks (DNN), k-nearest neighbor, support vector machine, naïve Bayesian classifier and 

Cox regression analysis methods. They found that DNN model is the most clinically useful method to 

predict and to identify risk factors for 10-year survival after breast cancer surgery. Yu et al. [10] estimated 

survival probability of 1-, 3-, 5-, and 10-year from ovarian cancer with Cox regression and Kaplan-Meier 

analyses. 

 

In this study, we simulated a high-dimensional gene expression survival dataset by varying censoring rates 

to examine the behaviors of ELMCox, ELMCoxEN, ELMCoxBAR, ELMCoxBoost, ELMmBoost, SPC, 

and Cox-L2 survival analysis models in predicting risk score and short-term survival. More specifically, the 

major contributions of this paper are as follows: 

 

• The paper presents that high-dimensional survival data can be easily and directly analyzed by SELM 

methods which have been brought to the literature in recent years; without time-consuming parameter 

adjustment, and without dimension reduction. 

 

• It is the only study in which SELM methods are compared with two frequently used methods, SPC and 

Cox-L2 methods, simulating high-dimensional survival data with varying censoring rates. With this aspect, 

this paper shows that SELM methods have a performance that competes with the performances of the SPC 

and Cox-L2 methods under different data structures. 

 

• This study supported other studies in the literature performed with real data, indicating that SELM 

methods were successful, with the experimental results. 

 

2. RELATED WORK 

 

Although there are many studies related to ELM method, there is very few studies related to SELM 

methods. So, we present all of the studies about SELM; and the most relevant publications in which SPC 

and Cox-L2 methods were used as in our study (Table 1). 

 

Wang and Li [3] presented a kernel ELM Cox model regularized by an L0-based broken adaptive ridge 

(BAR) penalization method and named as ELMCoxBAR. They simulated high-dimensional survival 

datasets setting sample size as n=300 and number of independent variables ranging from 500 to 5000. In 

their first scenario, they generated and predicted the data with a predetermined same kernel function and in 

second one, they used different types of kernel functions in generation and prediction process. They had 24 

different scenarios by changing data generation parameters and using different types of kernel functions 

and compared ELMCoxBAR method with L1-penalized Cox (Cox-L1), Cox-L2, random survival forest 

(RSF) with log-rank split (RSFL), RSF with maximally selected rank statistic splitting (RSFM), RSF with 

C index splitting (RSFC) and boosted Cox model (CoxBoost) methods. They also used high and ultra-high-

dimensional real survival datasets. They used Harrell’s concordance index (C-index) and integrated Brier 

score (IBS) as performance metric and found that the ELMCoxBAR method outperformed besides being 

robust to the other methods.  
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Wang and Zhou [11] compared the performances of the ensemble of ELM with the Buckley-James 

estimator (ELMBJEN), the ensemble of ELM with penalized Cox model (ELMCoxEN), ELM with 

likelihood-based boosting (ELMCoxBoost), and ELM with model-based boosting (ELMmBoost) were 

compared to RSFL, RSFM, RSFC, Cox-L1, and Cox-L2 models in high-dimensional real survival datasets. 

SELM methods used in the study were seen as strong competitors of the other methods.  

 

Wang et al. [4] presented an ELM ensemble to model right-censored survival data by combining the 

Buckley-James transformation and the random forest framework (SE-ELM). For this purpose, they used 

low-dimensional and high-dimensional real survival datasets to compare the performances of SE-ELM, 

RSFL, RSFLS, RSFCI, generalized boosted model (GBM) and Cox regression models in survival 

prediction. They reported that their proposed method generally showed better performance in low-

dimensional datasets than the other models and stable results as well. In the analysis process of high-

dimensional datasets, they determined that Cox regression analysis did not work due to curse of 

dimensionality problem and GBM model faced a heavy computation burden. Besides, SE-ELM method 

was found to be better than RSFL, RSFLS, RSFCI, Cox-L1 and Cox-L2 in terms of C-index.  

 

Dhillon and Singh [6] proposed a model named eBreCaP which is an ELM-based model for breast cancer 

survival prediction. They processed a high-dimensional real survival data containing genomic data and 

pathological images and compared the classification performances of ELMBJ, ELMBJEN, ELMCox, 

ELMCoxEN, ELMCoxBoost and ELMmBoost in prediction of low and high survival from breast cancer. 

They selected important features and reduced the data into low-dimension. They found ELMmBoost 

method as superior to other SELM methods. 

 

Yang et al. [12] used low-dimensional real survival dataset to predict survival from chronic heart failure 

and also generated low-dimensional survival data to compare performances of Cox-L1, ELMCox and RSF 

methods in survival prediction. They reported that ELMCox model was the best with the highest C-index 

and the lowest IBS.  

 

Bala et al. [13] used a low-dimensional real survival dataset about colorectal cancer patients and compared 

the 5-year survivability from colorectal cancer with support vector machines (SVM) and ELM methods. 

They gave sensitivity, specificity, accuracy, negative predictive value, positive predictive value rates and 

AUC, F-score as the classification performance of the methods. They found that ELM method was better 

classification rate than SVM method. 

 

Wang et al. [14] aimed to predict the survival risk of esophageal cancer using Kohonen network clustering 

algorithm and kernel ELM methods and compare the results with artificial bee colony optimized SVM 

(ABC-SVM), the three layers of random forest (TLRF), the gray relational analysis-particle swarm 

optimization SVM (GP-SVM), and the mixed-effects Cox model (Cox-LMM). They reported that the 

method they proposed had the advantage of prediction accuracy. 

 

Sun et al. [15] introduced a novel method called GPMKL based on multiple kernel learning and applied 

this method to genomic, pathological, and genomic+pathological survival datasets of breast cancer patients 

to predict long-term and short-term survivors. They compared GPMKL to Cox-L1, elastic net penalized 

Cox (EN-Cox), parametric censored regression models (PCRM), RSF, boosting concordance index 

(BoostCI) and SPC methods. They determined that the proposed method outperformed. 

 

Bair and Tibshirani [1] proposed SPC method in comparison to median cut, clustering-Cox, clustering 

partial least squares (PLS), 2-means, best p-value, SVM, PLS regression methods in both high-dimensional 

simulated and real survival cancer datasets. Using SPC method, they selected the most relevant genes to 

survival and analyzed the subset containing important genes to predict survival of cancer patients.  

 

Bair et al. [16] compared SPC method with principal component regression (PCR), PCR restricted to only 

one principal component (PCR-1), PLS, Ridge regression, Lasso, mixed covariance-variance and gene 

shaving methods in survival prediction of Lymphoma patients. Besides, they empirically compared the 
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methods too. They found that SPC method was in second order coming after gene shaving method in 

simulation results but found as the best resulting method according to real dataset analysis results. 

 

Türe and Kurt Ömürlü [17] proposed a new approach namely SPC with the ANN using RSF (S-ANN-PCA) 

and compared this approach to the SPC method in real and generated high dimensional gene expression 

survival data. They stated that the SPC method has higher explanatory rate performance than the new 

approach and can overcome the high dimension problem. 

 

Aktürk Hayat et al. [18] proposed a dimension reduction technique called survival tree based-nonlinear 

PCA with ANN (NLPCA-NN) and compared this method to SPC method. They used a high-dimensional 

real dataset and determined the most important genes by survival tree method and then they applied 

NLPCA-NN method to the subset consisting of important genes. They compared the two methods in terms 

of C-index and reported that SPC had higher C-index value than the proposed method. 

 

Table 1. Existing related state-of-the-art studies  

Authors Data set Method Censoring rate Best method 

Wang and Li 

[3] 

High-

dimensional 

generated and 

real survival 

datasets 

ELMCoxBAR 

Cox-L1 

Cox-L2 

RSFL 

RSFM 

RSFC 

CoxBoost 

Ranging from 

25% to 75% in 

simulation 

 

Ranging from 

32% to 79% in 

real datasets 

Median range of C-index 

ELMCoxBAR: 0.50-0.75 (in 

simulation) and 0.50 – 0.773 

(in real datasets) 

 

Median range of IBS 

ELMCoxBAR: 0.11-0.20  

Wang and 

Zhou [11] 

High-

dimensional 

real survival 

datasets 

ELMBJEN 

ELMCoxEN 

ELMCoxBoost 

ELMmBoost 

RSFL 

RSFM 

RSFC 

Cox-L1 

Cox-L2 

Ranging from 

27.1% to 

61.3% 

 

Median of rank in C-index: 

 

ELMBJEN: 1-2 

ELMCoxEN: 3.75-5 

 

 

Wang et al. 

[4] 

Low-

dimensional 

and high-

dimensional 

real survival 

datasets 

SE-ELM 

RSFL 

RSFLS 

RSFCI 

GBM 

Cox 

Ranging from  

29% to 82% 

 

SE-ELM 

Median range of C-index 

0.60-0.850 in low-dimensional 

data 

0.60-0.675 in high-dimensional 

data 

Dhillon and 

Singh [6] 

High-

dimensional 

real survival 

data containing 

genomic data 

and 

pathological 

images 

ELMBJ 

ELMBJEN 

ELMCox 

ELMCoxEN 

ELMCoxBoost 

ELMmBoost 

No information 

ELMmBoost 

 

Sensitivity= 0.83 

Specificity= 0.75 

Accuracy= 0.85 

Precision= 0.64 

AUC= 0.85 

AUPR= 0.75 

MCC= 0.56 

Hazard ratio= 0.05 

C-index= 0.64 

Yang et al. 

[12] 

Low-

dimensional 

real and 

simulated 

survival 

datasets 

ELMCox 

RSF 

Cox-L1 

 

No information 

for real data set 

 

25%, 50% and 

75% for 

simulation 

ELMCox  

 

Simulation 

C-index= 0.55-0.80  

IBS= 0.06-0.12 
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Real dataset 

C-index= 0.775 (0.755, 0.802) 

IBS= 0.166 (0.150, 0.182) 

Bala et al. [13] 

Low-

dimensional 

real survival 

dataset 

SVM  

ELM 
No information 

ELM with radial basis 

function  

Sensitivity=88.38% 

Specificity=97.13% 

Accuracy=92.80% 

Positive predictive 

value=96.79% 

Negative predictive 

value=89.51% 

AUC=0.941 

F score=0.924 

Wang et al. 

[14] 

Low-

dimensional 

real survival 

dataset 

Kernel ELM 

ABC-SVM 

TLRF 

GP-SVM 

Cox-LMM 

32% 

Radial basis function-ELM 

Sensitivity= 95% 

Specificity= 87.80% 

Accuracy= 91.80% 

Sun et al. [15] 

High-

dimensional 

real genomic 

and 

pathological 

survival data 

GPMKL  

Cox-L1 

EN-Cox 

PCRM 

RSF 

BoostCI 

SPC 

No information 
GPMKL 

AUC: 0.828±0.034 

Bair and 

Tibshirani [1] 

High-

dimensional 

generated and 

real survival 

datasets 

 

SPC 

Median cut 

Clustering-

Cox, 

Clustering 

partial least 

squares (PLS) 

2-means 

Best p-value  

SVM 

PLS regression 

No information 

SPC 

R2 ranging from 0.113 to 

0.361 for real datasets 

  

R2=0.077±0.023 for 

simulation 

Bair and 

Tibshirani [16] 

High-

dimensional 

generated and 

real survival 

dataset 

SPC 

PCR 

PCR-1 

PLS 

Ridge 

regression 

Lasso 

Mixed 

covariance-

variance 

Gene shaving 

No information 

Gene shaving 

LSE=223±8.48 (Scenario 1) 

LSE=234±12.46 (Scenario 2) 

 

SPC  

R2 ranging from 0.16 to 0.36 

for real datasets 

Türe and Kurt 

Ömürlü [17] 

High-

dimensional 

generated and 

real survival 

dataset 

SPC 

S-ANN-PCA 
No information 

SPC 

Median value of explanatory 

rate= 0.119 (0.084-0.167) in 

simulation  
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Error rate of 36.78% in real 

dataset 

Aktürk et al. 

[18] 

High-

dimensional 

real survival 

dataset 

SPC 

NLPCA-NN 
No information 

SPC 

C-index=0.726 

Our study 

Simulated high-

dimensional 

survival data 

SPC 

ELMCox 

ELMCoxEN 

ELMCoxBAR 

ELMCoxBoost 

ELMmBoost 

Cox-L2 

10%, 30%, 

50%, 70% 

ELMCoxBoost 

 

Median range of 

C-index=0.784-0.798 

IBS=0.072-0.101 

Accuracy=0.817-0.833 

AUPR=0.879-0.895 

AUC=0.851-0.867 

F1 score=0.808-0.825 

Kappa=0.600-0.634 

MCC=0.489-0.551 

 

3. MATERIAL AND METHOD 

  

In this section, we first described the theory of ELM and the SELM models built on the ELM structure, 

namely ELMCox, ELMCoxEN, ELMCoxBAR, ELMCoxBoost, ELMmBoost. We then briefly explained 

SPC and Cox-L2 methods. At the end of this section, we gave information about the simulation algorithm 

and how the parameters of the methods we used were set. 

 

3.1. Extreme Learning Machine 

 

ELM was first proposed as single hidden layer feedforward neural networks by Huang et al. [19], and then 

was expanded as a generalized single hidden layer feedforward neural networks in which the hidden layer 

does not need to act like a neuron [19-23]. In the ELM structure, hidden node parameters are randomly 

assigned, independent of the training set, and these parameters do not need to be adjusted. Output weights 

are calculated under some constraints [23]. Unlike the backpropagation algorithm, which minimizes only 

training error, the ELM algorithm minimizes both training error and output weights [23, 24]. Minimum 

output weights provide better generalization performance [25]. In ELM structure, since a wide variety of 

activation functions such as; sigmoid, hard-limit, Gaussian, multi quadratic, wavelet, Fourier series, etc. 

can be used, and it provides to analyze both low and high dimensional data, this method is frequently used 

in both classification and regression problems [23].  

 

Let n and p be the number of observations and independent variables, respectively; yi ∈ Rm denotes the 

dependent variable value of each observation (m=1 for regression, m=2 for classification) and 
{(xi, yi)|xi ∈ Rp, yi ∈ Rm}𝑖=1

𝑛  denotes the training set, single hidden layer feedforward neural networks 

with L hidden nodes are then defined as follows: 

 

fL(x) = ∑ g(𝐱, wi, bi)
L
i=1 βi = 𝐡(𝐱)β                           (1) 

 

where g(.) is an activation function, wi ∈ Rp is an input weight vector, bi is the bias of ith hidden layer, β =
[β1, … , βi, … , βL]T is the output weight vector. Hidden layer output weight matrix H and dependent variable 

matrix Y are defined as below: 

 

𝐇 = [
h(𝐱1)

⋮
h(𝐱n)

] = [
g(w1, b1, 𝐱1) ⋯ g(wL, bL, 𝐱1)

⋮ ⋱ ⋮
g(w1, b1, 𝐱n) ⋯ g(wL, bL, 𝐱n

]

nxL

                       (2) 
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Y = (
y1

T

⋮
yn

T
) = [

y11 ⋯ y1m

⋮ ⋱ ⋮
yn1 ⋯ ynm

]     .                                 (3) 

 

Then, the output weight β is the solution of the following formula: 

β̂ = 𝐇+Y                      (4) 

 

where 𝐇+ = (𝐇′𝐇)−1𝐇′, is the generalized pseudo-inverse of 𝐇. According to the Ridge theory, a positive 

value can be added to the diagonals of 𝐇′𝐇 to obtain more stable and generalized results [3, 25]. Implicit 

solution of output weights is then the following:  

 

β̂ = 𝐇Y (
I

C
+ 𝐇𝐇Y)

−1
Y                      (5) 

 

where Inxn is the identity matrix. If the hidden layer transformation h(⋅) is unknown, a positive-defined 

kernel matrix K(∙,∙) can be defined as follows: 

 

K(𝐱i, 𝐱j) = h(𝐱i) ∗ h(𝐱j).                               (6) 

 

A kernel ELM with L supporting vectors then can be modeled as [3, 26]: 

 

fL(xi) = ∑ K(𝐱i, 𝐱j)βj
L
j=1  , i = 1,2, … , n .                 (7) 

 

3.1.1. A regularized Cox extreme learning machine model  

 

In this approach, a linear combination of independent variables in the penalized Cox model replaces a non-

linear output function of the ELM neural network, and coefficients are estimated by optimization of 

modified Cox partial likelihood [3, 11, 12, 27]:  

 

fL(x) − ∑ pλ(|βj|)
p
j=1                      (8) 

 

where λ denotes the tuning parameter, and pλ(|∙|) is the penalty function [28]. There are many advantages 

of the ELMCox method. One is that any continuous activation function can be converged by a single hidden 

layer feedforward neural networks by an adaptive hidden node. This shows that complex network structures 

like MLP are not always necessary. Secondly, the backpropagation learning algorithm and algorithms 

similar to it try to adapt the input and output weights and hidden layer bias values with optimizations based 

on gradient descent. This case decreases the generalization ability of the network. However, hidden node 

parameters do not need to be adapted to ELM structure, and better performance can be obtained without a 

complex model parameter adjusting process. Thirdly, Wang et al. showed in their simulation study that 

ELMCox can work with a linear kernel function even in a wide variety of data structures and give stable 

results in different censoring rates [4]. According to this, linear check is not sensitive to kernel parameter c 

[12].  

 

3.1.2. An ensemble of regularized Cox extreme learning machine model  

 

ELMCoxEN method, developed to obtain more stable results, combines the random forest type ensemble 

method with ELMCox. Both models preserve the non-linearity property of ELM and the classical Cox 

method [4, 6]. 

 

3.1.3. Broken adaptive ridge-regularized Cox extreme learning machine model  

 

A sparse Cox regression via broken adaptive ridge (CoxBAR) is proposed as an L0-based iteratively 

reweighted L2-penalized Cox regression [29]. Wang and Li [3] developed the ELMCoxBAR model because 
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proportional hazard and linearity of coefficients assumptions of Cox regression analysis may be violated. 

The partial log-likelihood for the ELMCoxBAR model is given below: 

 

g(β) = ∑ δiKnxnβn
i=1 − ∑ δilog ∑ exp(Knxnβ) − 0.5In(n) ∑

βj
2

β̂j
2

p
j=1jϵR(τi)

n
i=1               (9) 

 

where Knxn is an appropriate kernel function, Ti is the actual survival time, Ci is the censoring time, δi =
I(Ti ≤ Ci) is the censoring indicator, and τi = min (Ti,  Ci). The maximization of g(β) via the Newton-

Raphson procedure yields an estimation of β where the initial solution β̂(0) is a Cox ridge estimator, which 

can be set to In(n) [3].  

 

3.1.4. An extreme learning machine Cox model with likelihood-based boosting  

 

Wang and Zhou applied ELM with a likelihood-based-boosting environment to minimize the loss function 

and obtain more efficient results [6, 11]. L2-penalization of partial log-likelihood function is used as the 

loss function in this approach: 

 

plpen(β) = pl(β) − 0.5λβTPβ                  (10) 

 

where P is a pxp matrix usually corresponding to the identity matrix and λ is the Ridge penalty term. An 

offset term η̂ = XTβ̂ is included in the log-likelihood to check the iterative changes of the parameter 

estimate; the function results in as follows [30]: 

 

plpen(β|β̂) = ∑ δ(i)[η̂(i) + X(i)Tβ − log(∑ exp{η̂(l) + X(l)Tβ}I∈R(i) )] −
λ

2
βTPβn

i=1 .           (11) 

 

3.1.5. An extreme learning machine Cox model with gradient-based boosting 

 

ELMmBoost is another kind of ELM model with boosting framework that uses model-based boosting to 

obtain better results [4]. The model-based boosting algorithm is step by step as follows:  

 

The negative gradient vector is calculated as follows with the initial value β̂ = (0, . . . ,0) 

 

u(i) = δ(i) − ∑ δ(l) exp{X(l)Tβ̂}

∑ exp{X(k)Tβ̂}
k∈R(l)

l∈R(i) |
β̂=(0,...,0)

               (12) 

 

where R(i) = {j ∈ {1, … , n}: t(j) < t(i)} namely set of observations at risk at time t(i). Least squares 

estimator 

 

b̂j = (Xj
TXj)

−1Xj
Tu                   (13) 

 

is then applied to the negative gradient vector, and possible updates are computed. The best one is chosen 

among all the possible updates according to 

 

j∗ = argminj ∑ (u(i) − Xj
(i)

b̂j)
2n

i=1                  (14) 

 

and the updated estimation is obtained as 

 

β̂j∗ = β̂j∗ + vb̂j∗                   (15) 

 

where v is the tuning parameter ranging between 0 and 1. This process occurs as many as iterations [30]. 
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3.2. Supervised Principal Component Analysis  

 

Bair and Tibshirani propose the SPC method for dimension reduction of high dimensional gene expression 

dataset [1]. This algorithm estimates principal components from a subset of genes related to the dependent 

variable [18]. Since the dependent variable is considered in the selection process of a subset of genes, this 

method is called “supervised” [31]. SPC procedure consists of the following steps [16-18]: 

• Calculate coefficients of univariate Cox regression analysis for each of the genes.  

• Calculate a θ threshold value and pick the genes whose regression coefficients exceed θ in absolute 

value, where θ is estimated by cross-validation. 

• Calculate principal component(s) from singular value decomposition of reduced data matrix 

obtained by the previous step. 

• Estimate the dependent variable using principal component(s) in Cox regression analysis. 

 

3.3. L2-Regularized Cox Regression Model  

 

It is essential to deal with the curse of dimensionality in high-dimensional survival data analysis. Penalized 

likelihood-based models are developed to handle this. The penalized log partial likelihood is given by 

 

ln(𝛃) − ∑ pλ(|βj|)
p
j=1                     (16) 

 

where ln(𝛃) indicates the partial log-likelihood given n observations, λ denotes the tuning parameter, and 

pλ(|∙|) is the penalty function [28]. Verweij and Houwelingen [2] were the first to use the Ridge penalty 

term in partial log-likelihood function to deal with high collinearity that was caused by high dimensionality, 

defined as below [2, 32]: 

 

pλ(|βj|) = λβj
2, j = 1, … , p .                (17) 

 

3.4. Simulation 

 

In this study, we performed high-dimensional gene expression survival data simulation. The sample size 

and the number of genes of each simulated dataset were set to n=200 and p=1000, respectively. For each 

patient, values of the genes were derived from a multivariate normal distribution with 𝛍 ∼ Uniform(0,1) 

and 𝛔 ∼ Uniform(0,1). The correlation matrix was defined such that the absolute values of its all off-

diagonal terms were a maximum of 0.7. To generate the survival time of each patient, we took the sum of 

the expression levels of the first 200 genes and added a Gaussian noise term with a variance of 0.01. 

Generated survival times (T) were then standardized such that the maximum value is 120 months. Censored 

times (C) were generated such that the censoring rates were 10%, 30%, 50%, and 70%. Survival status was 

defined according to the censoring indicator δi = I(Ti ≤ Ci), i = 1,2, … , n. Dataset was first randomly 

divided into training-test sets by a 70:30 ratio. A training set was used to train the survival models, and a 

test set was used to assess the risk score prediction performance of the models. After estimating the risk 

scores in the datasets generated with these algorithms, for the estimation of short-term survival, which is 

the second step of the simulation study, the survival times in the same training and test sets were then 

divided into short-term survival and long-term survival classes according to being <60 months and ≥60 

months, respectively. 5-year survival probabilities were computed from the risk scores. The performance 

evaluation of the survival models in predicting risk score was done by C index and IBS [33, 34]; in 

predicting short-term survival was done by F1 score, kappa coefficient (κ), AUC, AUPR, accuracy, and 

Matthew’s correlation coefficient (MCC) [35-37] (Figure 1). All these processes were repeated 1000 times. 
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Figure 1. Flowchart of the simulation steps 

 

3.4.1. Experimental setup 

 

In all SELM models, a linear kernel with kernel parameter c=0.5 was used since the linear kernel is as good 

as the radial basis function and works faster [3]. Besides, the L2-penalty term was used in the ELMCox 

model and its ensemble version – ELMCoxEN - which contained 100 base models. In ELMCox, 

ELMCoxEN, and Cox-L2 models, the L2 penalty parameter value λ was determined as the value that gave 

the minimum squared cross-validated error. The tool used in the current study is R Studio 1.4.1106, and the 

packages are survival, superpc, SurvELM, glmnet, mboost, CoxBoost, and ELMSurv for modeling 

purposes; survcomp, DescTools, caret, pROC, and PRROC for performance comparison purposes. 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

C index gives performances of risk score estimation of the survival models with varying censoring rates 

ranging between 0.746-0.796, 0.739-0.798, 0.726-0.791, and 0.708-0.784 for the censoring rates of 10%, 

30%, 50%, and 70%, respectively. The IBS results of the models are ranging between 0.072-0.096, 0.077-

0.103, 0.086-0.109 and 0.101-0.120 for 10%, 30%, 50% and 70% censoring rates, respectively (Table 2). 

The results of the second stage of our study regarding short-term prediction with different censoring rates 

are given in Table 3 by F1 score, κ, AUC, AUPR, accuracy, and MCC. The range of the performance 
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metrics for varying censoring rates are found as 0.773-0.824, 0.772-0.824, 0.754-0.818 and 0.739-0.808 

for F1 score; 0.535-0.634, 0.526-0.633, 0.500-0.626 and 0.470-0.600 for κ; 0.816-0.867, 0.808-0.865, 

0.788-0.863 and 0.776-0.851 for AUC; 0.839-0.895, 0.836-0.893, 0.817-0.889 and 0.807-0.879 for AUPR; 

0.783-0.833, 0.767-0.833, 0.767-0.817 and 0.750-0.817 for accuracy; 0.551-0.645, 0.541-0.642, 0.519-

0.634 and 0.489-0.609 for MCC for the censoring rates of 10%, 30%, 50% and 70%, respectively. As seen, 

the results are similar to the former one in that there are minor changes within and among the models by 

changing censoring rates and a decrease in performance with an increase in the censoring rate.  

 

Table 2. Risk score estimation performances of the survival models according to varying censoring rates 

C
-I

n
d

ex
 

Method 
Censoring Rate 

10% 30% 50% 70% 

SPC 0.773 (0.731 - 0.814) 0.776 (0.732 - 0.815) 0.775 (0.725 - 0.817) 0.777 (0.726 - 0.823) 

ELMCox 0.792 (0.749 - 0.831) 0.790 (0.741 - 0.830) 0.785 (0.730 - 0.827) 0.768 (0.742 - 0.813) 

ELMCoxEN 0.778 (0.736 - 0.818) 0.778 (0.728 - 0.819) 0.770 (0.716 - 0.814) 0.761 (0.702 - 0.811) 

ELMCoxBAR 0.787 (0.747 - 0.826) 0.786 (0.739 - 0.825) 0.776 (0.721 - 0.819) 0.762 (0.700 - 0.811) 

ELMCoxBoost 0.796 (0.756 - 0.834) 0.798 (0.751 - 0.835) 0.791 (0.740 - 0.834) 0.784 (0.723 - 0.830) 

ELMmBoost 0.746 (0.696 - 0.788) 0.739 (0.688 - 0.788) 0.726 (0.666 - 0.779) 0.708 (0.645 - 0.769) 

Cox-L2 0.794 (0.753 - 0.833) 0.797 (0.747 - 0.832) 0.788 (0.737 - 0.830) 0.778 (0.713 - 0.826) 

IB
S

 

SPC 0.096 (0.087 - 0.105) 0.103 (0.093 - 0.112) 0.109 (0.098 - 0.121) 0.120 (0.107 - 0.131) 

ELMCox 0.074 (0.062 - 0.087) 0.080 (0.069 - 0.093) 0.091 (0.077 - 0.108) 0.111 (0.090 - 0.132) 

ELMCoxEN 0.078 (0.065 - 0.090) 0.084 (0.072 - 0.096) 0.093 (0.079 - 0.108) 0.108 (0.090 - 0.126) 

ELMCoxBAR 0.076 (0.063 - 0.088) 0.078 (0.067 - 0.089) 0.091 (0.078 - 0.105) 0.106 (0.089 - 0.123) 

ELMCoxBoost 0.072 (0.061 - 0.085) 0.077 (0.067 - 0.089) 0.086 (0.074 - 0.101) 0.101 (0.084 - 0.119) 

ELMmBoost 0.087 (0.074 - 0.099) 0.092 (0.080 - 0.106) 0.102 (0.088 - 0.116) 0.116 (0.099 - 0.130) 

Cox-L2 0.074 (0.062 - 0.087) 0.081 (0.069 - 0.093) 0.092 (0.078 - 0.108) 0.109 (0.088 - 0.130) 

Performances of the methods are shown as median (25th – 75th percentiles). 

 

Table 3. Class estimation performances of the survival models according to varying censoring rates 

 

Method 
Censoring Rate 

10% 30% 50% 70% 

F
1

 S
co

re
 

SPC 0.800 (0.737 - 0.853) 0.800 (0.725 - 0.857) 0.787 (0.714 - 0.842) 0.769 (0.696 - 0.833) 

ELMCox 0.820 (0.755 - 0.872) 0.812 (0.746 - 0.872) 0.800 (0.727 - 0.862) 0.776 (0.696 - 0.840) 

ELMCoxEN 0.809 (0.745 - 0.857) 0.807 (0.742 - 0.861) 0.794 (0.722 - 0.852) 0.783 (0.711 - 0.846) 

ELMCoxBAR 0.815 (0.759 - 0.868) 0.811 (0.746 - 0.866) 0.800 (0.730 - 0.857) 0.787 (0.710 - 0.848) 

ELMCoxBoost 0.825 (0.767 - 0.877) 0.824 (0.765 - 0.875) 0.818 (0.750 - 0.872) 0.808 (0.744 - 0.862) 

ELMmBoost 0.773 (0.704 - 0.831) 0.772 (0.696 - 0.833) 0.754 (0.667 - 0.819) 0.739 (0.667 - 0.806) 

Cox-L2 0.824 (0.768 - 0.875) 0.821 (0.762 - 0.871) 0.815 (0.746 - 0.873) 0.800 (0.727 - 0.857) 

κ
 

SPC 0.599 (0.491 - 0.681) 0.579 (0.478 - 0.675) 0.558 (0.457 - 0.661) 0.532 (0.418 - 0.629) 

ELMCox 0.628 (0.523 - 0.724) 0.615 (0.500 - 0.702) 0.590 (0.452 - 0.699) 0.529 (0.434 - 0.638) 

ELMCoxEN 0.602 (0.499 - 0.698) 0.598 (0.492 - 0.696) 0.585 (0.462 - 0.685) 0.558 (0.446 - 0.659) 

ELMCoxBAR 0.622 (0.514 - 0.701) 0.602 (0.503 - 0.700) 0.595 (0.476 - 0.697) 0.561 (0.458 - 0.661) 

ELMCoxBoost 0.634 (0.539 - 0.729) 0.633 (0.527 - 0.722) 0.626 (0.510 - 0.726) 0.600 (0.502 - 0.697) 

ELMmBoost 0.535 (0.430 - 0.634) 0.526 (0.406 - 0.633) 0.500 (0.383 - 0.611) 0.470 (0.352 - 0.571) 

Cox-L2 0.633 (0.531 - 0.729) 0.632 (0.525 - 0.718) 0.622 (0.503 - 0.723) 0.585 (0.481 - 0.690) 

A
U

C
 

SPC 0.845 (0.789 - 0.888) 0.839 (0.784 - 0.885) 0.830 (0.767 - 0.882) 0.816 (0.749 - 0.863) 

ELMCox 0.863 (0.812 - 0.907) 0.854 (0.800 - 0.903) 0.846 (0.769 - 0.895) 0.811 (0.500 - 0.872) 

ELMCoxEN 0.850 (0.795 - 0.896) 0.846 (0.789 - 0.895) 0.840 (0.776 - 0.890) 0.829 (0.764 - 0.877) 

ELMCoxBAR 0.858 (0.807 - 0.902) 0.853 (0.800 - 0.897) 0.845 (0.782 - 0.895) 0.829 (0.770 - 0.877) 

ELMCoxBoost 0.867 (0.820 - 0.908) 0.865 (0.814 - 0.907) 0.863 (0.803 - 0.905) 0.851 (0.795 - 0.891) 

ELMmBoost 0.816 (0.755 - 0.869) 0.808 (0.741 - 0.869) 0.788 (0.721 - 0.856) 0.776 (0.707 - 0.836) 

Cox-L2 0.866 (0.815 - 0.908) 0.862 (0.814 - 0.904) 0.861 (0.798 - 0.904) 0.843 (0.785 - 0.888) 

A
U

P
R

 

SPC 0.866 (0.789 - 0.918) 0.862 (0.785 - 0.917) 0.849 (0.763 - 0.911) 0.835 (0.741 - 0.899) 

ELMCox 0.893 (0.827 - 0.938) 0.886 (0.824 - 0.935) 0.872 (0.785 - 0.930) 0.831 (0.658 - 0.911) 

ELMCoxEN 0.880 (0.810 - 0.928) 0.879 (0.811 - 0.927) 0.865 (0.793 - 0.924) 0.858 (0.779 - 0.915) 

ELMCoxBAR 0.890 (0.823 - 0.935) 0.883 (0.824 - 0.934) 0.874 (0.798 - 0.928) 0.861 (0.781 - 0.912) 

ELMCoxBoost 0.895 (0.833 - 0.939) 0.893 (0.833 - 0.940) 0.889 (0.818 - 0.935) 0.879 (0.809 - 0.929) 

ELMmBoost 0.839 (0.756 - 0.902) 0.836 (0.752 - 0.901) 0.817 (0.724 - 0.890) 0.807 (0.707 - 0.876) 

Cox-L2 0.889 (0.825 - 0.936) 0.886 (0.820 - 0.932) 0.880 (0.805 - 0.927) 0.869 (0.792 - 0.920) 

A
cc

u
ra

c

y
 

SPC 0.800 (0.750 - 0.850) 0.800 (0.750 - 0.850) 0.800 (0.733 - 0.833) 0.783 (0.717 - 0.817) 

ELMCox 0.817 (0.767 - 0.867) 0.817 (0.767 - 0.867) 0.800 (0.733 - 0.850) 0.783 (0.650 - 0.833) 

ELMCoxEN 0.817 (0.750 - 0.850) 0.817 (0.750 - 0.850) 0.800 (0.733 - 0.850) 0.783 (0.733 - 0.833) 

ELMCoxBAR 0.817 (0.767 - 0.867) 0.817 (0.767 - 0.867) 0.800 (0.750 - 0.850) 0.783 (0.733 - 0.846) 
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ELMCoxBoost 0.833 (0.783 - 0.867) 0.833 (0.771 - 0.867) 0.817 (0.767 - 0.867) 0.817 (0.767 - 0.850) 

ELMmBoost 0.783 (0.717 - 0.833) 0.767 (0.717 - 0.833) 0.767 (0.700 - 0.817) 0.750 (0.683 - 0.800) 

Cox-L2 0.817 (0.767 - 0.867) 0.833 (0.767 - 0.867) 0.817 (0.767 - 0.867) 0.800 (0.750 - 0.850) 

M
C

C
 

SPC 0,606 (0,504 - 0,686) 0,594 (0,497 - 0,690) 0,569 (0,473 - 0,667) 0,546 (0,443 - 0,636) 

ELMCox 0,635 (0,540 - 0,730) 0,628 (0,530 - 0,714) 0,600 (0,529 - 0,702) 0,540 (0,444 - 0,654) 

ELMCoxEN 0,613 (0,514 - 0,700) 0,605 (0,505 - 0,700) 0,597 (0,482 - 0,694) 0,571 (0,468 - 0,668) 

ELMCoxBAR 0,633 (0,534 - 0,713) 0,621 (0,525 - 0,706) 0,603 (0,495 - 0,702) 0,576 (0,476 - 0,667) 

ELMCoxBoost 0,643 (0,558 - 0,734) 0,642 (0,546 - 0,728) 0,634 (0,530 - 0,731) 0,609 (0,519 - 0,700) 

ELMmBoost 0,551 (0,455 - 0,644) 0,541 (0,432 - 0,649) 0,519 (0,407 - 0,624) 0,489 (0,380 - 0,589) 

Cox-L2 0,645 (0,545 - 0,733) 0,642 (0,535 - 0,724) 0,632 (0,523 - 0,731) 0,598 (0,500 - 0,694) 

Performances of the methods are shown as median (25th – 75th percentiles). 

 

Both risk score and short-term survival prediction results shows that an increase in censoring rate decreases 

the performances; however, there are no dramatic changes within and among the survival models in all 

censoring scenarios. For this reason, hierarchical clustering analysis was applied to determine the 

relationships among the methods, taking the C index and IBS results as the input variable for the first stage; 

F1 score, κ, AUC, AUPR, accuracy, and MCC results as input variables for the second stage of the study. 

As seen in dendrogram plots, when the censoring rate is 10% and 30%, ELMCoxBoost, Cox-L2, ELMCox, 

and ELMCoxBAR show similar performance (Figure 2a, 2b). When the censoring rate increases to 50%, 

ELMCox, Cox-L2, ELMCoxBoost; ELMCoxEN, and ELMCoxBAR models show similar performances 

(Figure 2c). With a 70% censoring rate, ELMCox, ELMCoxEN, and ELMCoxBAR create a cluster as 

ELMCoxBoost, Cox-L2 and SPC make the second cluster showing similar performances (Figure 2d). It has 

been noted that ELMCoxBoost and Cox-L2 methods are always in the same cluster, and ELMmBoost 

dissociates from all other methods in all scenarios (Figure 2a-d). According to the dendrogram plots; for 

the censoring rate of 10%, the first cluster includes ELMCox, ELMCoxBAR, Cox-L2, and ELMCoxBoost. 

SPC and ELMCoxEN create the second cluster. ELMmBoost method dissociates from the others (Figure 

3a).  When the censoring rate is 30%, ELMCoxBoost and Cox-L2 methods make up the first cluster. The 

second cluster close to the first one contains ELMCox, ELMCoxBAR, and ELMCoxEN. SPC and 

ELMmBoost methods are the two most different methods that perform furthest from other methods, 

respectively (Figure 3b). Similar to the dendrogram for the censoring rate of 30%, ELMCox, 

ELMCoxBAR, and ELMCoxEN, SPC methods are included in a cluster when 50% of the observations are 

censored. The second cluster comprises ELMCoxBoost and Cox-L2, as it happened when the censoring rate 

was 30%, and ELMmBoost is the furthest method from the others (Figure 3c). The clustering of the methods 

changes a bit when the censoring rate increases to 70%. ELMCoxEN and ELMCoxBAR form the first 

cluster, while SPC and ELMCox create the second one. Furthermore, the third cluster contains 

ELMCoxBoost and Cox-L2. As seen in all dendrograms, ELMmBoost dissociates from all other methods 

also when the censoring rate is 70% (Figure 3d). It is noteworthy that ELMCoxBoost and Cox-L2 methods 

always fall into the same cluster, and ELMmBoost dissociates from the others in all censoring scenarios 

(Figure 3a-d).   

 

 

  

 

(a) 10%   (b) 30% 
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(c) 50%   (d) 70% 
Figure 2. Dendrogram showing the relationship among the survival models by C index and IBS 

according to varying censoring rates 
 

 

 

 

 

(a) 10%  (b) 30% 
   
   

 

 

 

(c) 50%  (d) 70% 
Figure 3. Dendrogram showing the relationship among the survival models by F1 score, κ, AUC, AUPR, 

accuracy, and MCC according to varying censoring rates 
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Modeling high-dimensional survival data is essential for the early diagnosis of one of the most critical 

diseases, such as cancer. For this reason, appropriate and fast-processing analysis techniques should be used 

to analyze such data. Selecting the proper analysis is essential because most survival analysis techniques 

do not work when p>n.  

 

One of the most frequently used high-dimensional survival analyses is based on dimension reduction. These 

analyses are used to estimate some components that represent the big part or obtain the most important 

predictors of survival. SPC is the method that is frequently used for this aim [1, 16-18]. Some methods have 

also been proposed to solve high dimensionality problems in survival data without dimension reduction. 

SELM methods with their capability to analyze directly and promising competitive performance to existing 

survival analysis techniques such as classical and extended Cox regression analyses are used to analyze 

high-dimensional survival data [3, 4, 11]. The fact that these methods take the results of previous studies 

further makes these methods more useful. Dhillon and Singh [6] showed that SELM models performed 

better at breast cancer survival prediction than state-of-the-art results [15]. They also reported that the 

ELMmBoost is the best outperforming method; however, as we found in our study, all SELM models 

performed very close.  

 

As known, choosing a proper method plays a crucial role in the analysis process. Since censoring rates 

varies in each dataset, the answer to the question “which method for which dataset” changes. Wang and 

Zhou [11] found ELMCoxEN, ELMCoxBoost, and ELMmBoost as the best performing method in different 

high dimensional survival datasets whose censoring rates vary from 27.1% to 68.3%. Determining the most 

appropriate method to analyze high dimensional survival data among all methods giving close results, is 

more manageable with simulation than analyzing real datasets. Unlike the literature studies, we applied 

hierarchical clustering analysis in our simulation study to interpret the varying results in common. Our 

results show that ELMCoxBoost and Cox-L2 always have comparable performance, which means they can 

be used interchangeably, while ELMmBoost dissociates from the other methods. Wang and Li [3] compared 

the ELMCoxBAR technique to RSF, Cox-L1, Cox-L2, and CoxBoost methods by simulation and reported 

that the ELMCoxBAR showed the best performance when the kernel type is correctly specified. They also 

determined that the C index performance of ELMCoxBAR with RBF kernel was not affected by the changes 

in the c parameter with a censoring rate of 75% but was too sensitive when the censoring rate is 50% and 

showed decreasing performance with increasing c parameter value with a censoring rate of 25%. It also has 

faster learning and working speed. Our study found that the ELMCoxBAR model built with linear kernel 

and c=0.5 value by changing censoring rates performs gradually worse with an increase in the censoring 

rate.  

 

As well as being proposed as an alternative method for high-dimensional survival data, SELM models also 

show competitive performance in low-dimensional survival data [12-14]. It was determined by another 

simulation study in which ELMCox, RSF, and Cox-L1 were compared with low-dimensional survival 

datasets that as the censoring ratio increases, the ELMCox method performance gradually decreases, as 

also found in our study. It was pointed out that ELMCox and RSF are almost the same when the censoring 

rate is 25%, and Cox-L1 showed slightly worse performance when compared to the two [12]. Bala et al. 

[13] presented ELM with radial basis kernel had better performance than SVM on 5-year survival prediction 

of colorectal cancer patients. Wang et al. [14] showed that kernel ELM method had higher accuracy than 

ABC-SVM, TLRF, GP-SVM, and Cox-LMM methods in the survival risk of esophageal cancer.  

 

This paper made a scientific contribution to the literature on how SPC, SELM, and Cox-L2 methods perform 

against varying censoring rates in high-dimensional survival data. Because there is no other two-stage study 

in the literature in which SELM models and existing survival models are compared by simulation in the 

estimation of risk score and short-term survival, as done in our study. In line with the results of the few 

studies available, we showed that SELM, SPC, and Cox-L2 methods perform better when the rate of 

censored observations is less. The ELMCoxBoost method is the best performing one, as found in the study 

of Wang et al. [4] with real datasets, but there are no big differences among all methods as seen in the study 

of Dhillon and Singh [6]. When examining the structure of the models, SELM models learn much faster 

than traditional algorithms thanks to the non-iterative learning structure and the weights between the hidden 

and output layers as the only learning parameter. The non-iterative learning structure provides an optimal 
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solution with random parameters as the gradient descent-based optimization techniques used by the other 

models reduce the generalization ability. Besides the fact that hidden node parameters do not require 

adjusting in SELM models, a complicated parameter tuning process does not happen, and thus models 

perform better.  

 

All in all, SELM models brought to the literature as developing, widely used, and a solid competitor to the 

other survival analysis methods, which allow analyzing high-dimensional data directly, can be preferred 

instead of dimension reduction techniques such as SPC and other penalized models. 
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