
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 73, Number 1, Pages 76–103 (2024)
DOI:10.31801/cfsuasmas.1147449
ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr

Research Article; Received: July 23, 2022; Accepted: October 6, 2023

EXPONENTIATED GENERALIZED RAMOS-LOUZADA
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Yasin ALTINISIK1 and Emel CANKAYA2

1,2Department of Statistics, Sinop University, 57000 Sinop, TÜRKİYE

Abstract. In this paper, we propose a new generalization of Ramos-Louzada

(RL) distribution based on two additional shape parameters. Along with the
genesis of its distributional form, the derivation of cumulative density function

(cdf), survival and hazard rate functions, the quantile function (qf), moments,

moment generating function (mgf), Shannon and Renyi entropies, order sta-
tistics and a linear representation of the proposed distribution are inspected.

Several estimation methods of the model parameters are discussed throughout
two comprehensive simulation studies conducted to compare its performance

against some lifetime distributions. Application of a real dataset is presented

to illustrate the potentiality of this distribution in line with the simulation
studies.

1. Introduction

Lifetime modeling of complex studies has created a growing interest in the gen-
eration of flexible distributions that can provide solutions to certain problems of
lifetime systems. Ramos-Louzada is such a distribution recently proposed by Ramos
and Louzada ( [24]) to take instantaneous failures into account that can inevitably
occur in many lifetime applications. It is announced to be a worthwhile alternative
to the Exponential and Lindley ( [19]) distributions and take the forms of both
with a shape parameter λ ≥ 2. That is, the distribution becomes the exponential
distribution for large values of λ and it resembles to the Lindley distribution as λ
decreases towards 2.

2020 Mathematics Subject Classification. 05C38, 15A15, 05A15, 15A18.
Keywords. Lifetime datasets, Ramos-Louzada distribution, exponentiated generalized class,

EGRL distribution, information criteria.
1 yaltinisik@sinop.edu.tr-Corresponding author; 0000-0001-9375-2276
2 ecankaya@sinop.edu.tr; 0000-0002-2892-2520.

©2024 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

76



EGRL DISTRIBUTION 77

Let the random variable X follows the RL distribution with the rate parameter
θ = 1

λ , λ ≥ 2;

g(x) =
(θ2x− 2θ + 1)θ

1− θ
e−θx, (1)

where x ≥ 0 and 0.5 ≥ θ > 0. The cdf of X ∼ RL(θ) is defined as

G(x) = 1− (θ2x− θ + 1)

1− θ
e−θx. (2)

Although the RL distribution is attractive for its simplicity, it fails to provide
precise evaluation of many lifetime datasets, since it contains only one parameter.
Many researchers benefit from generalizing baseline (stated otherwise parent or tar-
get) distributions by adding one or more parameters into the model to increase the
model fit and overcome the absence of sufficient flexibility in modeling the data. In
this respect, Al-Mofleh et al. ( [3]) recently proposed a two-parameter generaliza-
tion of the RL distribution by inserting a power parameter into the model. They
showed that the generalized Ramos-Louzada (GRL) distribution performs better
than some well-known distributions such as Marshall-Olkin ( [21]), exponentiated
exponential ( [11]) and generalized Lindley ( [23]) distributions with respect to some
bias and accuracy measures.

This paper proposes a new three-parameter model as a competetive extension
for this generalization of the RL distribution, namely the exponentiated generalized
Ramos-Louzada (EGRL) distribution. The new distribution relies on the class of
distributions established by Corderio et al. ( [7]). The usual definition of the
probability density function (pdf) of this family of distributions is

f(x) = αβg(x)

[
1−G(x)

]α−1(
1−

[
1−G(x)

]α)β−1

, (3)

where α > 0 and β > 0 are two shape parameters and g(x) and G(x) are the pdf
and cdf of the baseline distribution, respectively. The shape parameters α and β
in equation (3) provide better flexibility in the tails of the data and increase the
entropy in the center ( [7, p. 2]). The cdf of the family of distributions is of the
form

F (x) =

(
1−

[
1−G(x)

]α)β

. (4)

Our basic motivation for such generalization is to provide a better fit of RL
distribution to the wider range of problems in statistics. It is also of our goal
to achieve reliable estimation of model parameters considering various estimation
methods. This is particularly important as it affects the model selection process.
Evaluation of model fit via goodness of fit statistics is a usual practice in the
literature. Al-Mofleh et al. ( [3]) consider only the minus log likelihood (-ℓ),
Cramer-von Mises (C*; [9]) and Kolmogorov-Smirnov (KS*; [16, 31]) goodness of
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fit statistics. The assessment of model fit via these goodness of fit statistics might
produce biased results, since they do not take the model complexity into account
when choosing the best distribution in a set of distributions. The distributions
under consideration should also be compared to each other by means of using
information criteria.

Incorporating additional adequate parameter(s) into the model improves the
model fit and provides more flexibility in analyzing datasets. However, caution
should be taken when generalizing baseline distributions using more parameters in
the model. Achieving a good model fit requires taking into account the balance
between the sample size and the number of parameters in the model (bias versus
variance tradeoff as used in the literature). The information criteria such as Akaike
information criterion (AIC; [1, 2]) and Bayesian information criterion (BIC; [29])
are originally developed for solving this problem as they do not only rely on log
likelihood values, but also on penalty values. The log likelihood represents the fit
of a model to the data at hand as the penalty value penalizes the model depending
on (a function of) the number of parameters in the model. Thus, we compare the
EGRL distribution against a set of alternative distributions by means of not only
using model fit statistics, but also different types of information criteria.

The outline of the paper is as follows. In Section 2, we derive various statistical
and reliability properties of the EGRL distribution. In Section 3, we elaborate on
the methods of maximum likelihood estimation (MLE), least squares estimation
(LSE), weighted least squares estimation (WLSE), and Cramer-von Mises estima-
tion (CVME) to obtain the estimates of model parameters and their standard errors
for the EGRL distribution. In Section 4, we perform two simulation studies. In the
first simulation study, we evaluate the performance of the methods in estimating
the parameters of the EGRL distribution with respect to bias, precision, and accu-
racy measures. In the second simulation study, we compare the performance of the
EGRL distribution to that of a set of other lifetime distributions with respect to
some goodness of fit statistics and information criteria for each estimation method.
In Section 5, we exemplify the applicability of EGRL distribution for a real life
problem. We illustrate that the goodness of fit statistics may not be able to detect
the best distribution in a set of distributions and information criteria should be
used instead when comparing the performance of distributions. The paper will be
concluded with a short discussion.

2. The EGRL Distribution

2.1. Probability density and cumulative density functions. Incorporating
equations (1) and (2) into the general definition in equation (3), we obtain the pdf
of EGRL distribution which is given by

f(x) = αβ
(θ2x− 2θ + 1)θ

1− θ
e−θx

[
(θ2x− θ + 1)

1− θ
e−θx

]α−1
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×
(
1−

[
(θ2x− θ + 1)

1− θ
e−θx

]α)β−1

. (5)

For α = β = 1, the distribution reduces to the RL distribution. Similarly, by
replacing G(x) in equation (4) with the cdf of RL distribution in equation (2), we
obtain the cdf of EGRL distribution as

F (x) =

(
1−

[
(θ2x− θ + 1)e−θx

1− θ

]α)β

. (6)
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Figure 1. The pdf and cdf plots of EGRL distribution with vary-
ing values of α, β and θ parameters.

Figure 1 displays the plots for the pdf and cdf of EGRL distribution using differ-
ent values of α, β and θ parameters. As can be seen on the left panel of the figure,
the EGRL distribution is flexible in the sense that it can be positively skewed with
or without reversed-J shape. The plots on the right panel of the figure show that
the cdf of EGRL distribution increases towards one with increasing values of the
random variable X for varying values of parameters α, β and θ.

2.2. Survival and hazard rate functions. The survival function (stated other-
wise reliability function) is commonly used for lifetime datasets which often rep-
resents the probability of a patient’s survival or an object’s resistance until a pre-
determined time point. The survival function of EGRL distribution indicating the
complement of the cdf in equation (6) is given by

S(x) = 1−
(
1−

[
(θ2x− θ + 1)e−θx

1− θ

]α)β

. (7)
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Figure 2. The survival and hazard rate plots of EGRL distribu-
tion with varying values of α, β and θ parameters.

Another widely used tool that can serve to characterize the EGRL distribution
is the hazard rate function which indicates the probability of the occurence of an
event. The values of hazard rate function for the EGRL distribution can easily be
obtained by

H(x) =
f(x)

S(x)
, (8)

where f(x) is the pdf in equation (5) and S(x) is the survival function in equation
(7).

Figure 2 displays the plots of survival and hazard rate functions for the EGRL
distribution. These plots exhibit increasing, decreasing, and reversed-J shaped
hazard rate functions and decreasing survival functions with increasing values of
random variable X.

2.3. The quantile function. The quantile function (qf) of EGRL distribution is
the inverse of the cdf in equation (6). By applying w = −θx− 1−θ

θ transformation
and using w in Lambert form wew for u = G(x) in equation (2), we obtain

wew =
(1− θ)(u− 1)e1−

1
θ

θ
. (9)

This means that w can be defined as a Lambert function of the real argument wew.
The real argument wew ∈ (− 1

e , 0) for u ∈ (0, 1). Thus,

QEGRL(u) =

−θW−1

[
(θ−1)

[
(1−u

1
β )

1
α

]
e1−

1
θ

θ

]
+ θ − 1

θ2
, (10)
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where W−1 is the negative branch of the Lambert function, 0 < θ ≤ 0.5, and
0 < u < 1 (see [7, p. 2]). The values of the negative branch of Lambert function
W−1 can easily be obtained using lambertWm1 subroutine of lamW package in R

statistical software.
The Bowley skewness ( [15]) and Moorsis kurtosis ( [22]) measures for EGRL

distribution are defined by

B =
QEGRL(3/4) +QEGRL(1/4)− 2QEGRL(2/4)

QEGRL(3/4)−QEGRL(1/4)
(11)

and

M =
QEGRL(3/8)−QEGRL(1/8) +QEGRL(7/8)−QEGRL(5/8)

QEGRL(6/8)−QEGRL(2/8)
, (12)

where, for example, QEGRL(3/4) is the third quartile and QEGRL(5/8) is the fifth
octile of the qf for the EGRL distribution. Table 1 shows how these measures
behave with varying values of parameters α, β and θ. In line with the pdf plots
in Figure 1, increasing values of Moorsis kurtosis measure are associated with the
pdfs with heavier tails. Positive values of the Bowley skewness measure in this table
indicate that the distributions are right skewed.

Table 1. The Bowley skewness and Moorsis kurtosis measures
with varying values of α, β, and θ parameters.

α β θ Bowley skewness Moorsis kurtosis
0.1 1.0 0.5 0.23 1.25
0.5 1.0 0.5 0.19 1.30
1.0 1.0 0.5 0.17 1.32
1.5 1.0 0.5 0.15 1.33
2.0 1.0 0.5 0.15 1.34
1.0 0.1 0.5 0.77 2.49
1.0 0.5 0.5 0.24 1.16
1.0 1.5 0.5 0.14 1.46
1.0 2.0 0.5 0.13 1.56
2.0 2.0 0.1 0.18 1.31
2.0 2.0 0.2 0.17 1.32
2.0 2.0 0.3 0.15 1.33
2.0 2.0 0.4 0.13 1.41
2.0 2.0 0.5 0.12 1.61

2.4. Moments. We follow an analogous procedure to the one given in the previous
subsection with a slightly different transformation

v = 1−G(x) =
(θ2x− θ + 1)

1− θ
e−θx, (13)
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where 0 < v < 1. The mth moment of EGRL distribution is given by

E(Xm) =

∫ ∞

0

xmf(x)dx = αβ

∫ 1

0

(−1)m+1
[
z(v)

]m
vα−1(1− vα)β−1dv, (14)

where

z(v) =

−θW−1

[
(1−θ)ve1−

1
θ

θ

]
+ θ − 1

θ2
.

The next subsection recalls some useful definitions and power series expansions
that can be used to obtain the moments, mgf, Shannon and Renyi entropies, and
order statistics of EGRL distribution.

2.5. Useful definitions and power series expansions. Let T be a random
variable from the exponentiated exponential distribution which has the following
pdf

r(t) = αβe−αt(1− e−αt)β−1, (15)

and cdf

R(t) = (1− e−αt)β , (16)

where α, β, t > 0 ( [11]). The pdf of a random variable from the exponentiated
generalized family of distributions can also be defined as

f(x) =
g(x)

1−G(x)
r

(
−log

[
1−G(x)

])
, (17)

where T = −log
[
1−G(X)

]
follows the exponentiated exponential distribution ( [4]).

By using equation (17), u = G(x), and the power series expansion

−log(1− u) =

∞∑
i=0

ui+1

i+ 1
, (18)

the pdf r

(
−log

[
1−G(x)

])
becomes

r

(
−log

[
1−G(x)

])
= r

( ∞∑
i=0

ui+1

i+ 1

)
= αβe−αD(1− e−αD)β−1, (19)

where D =
∑∞

i=0
ui+1

i+1 . Similarly, by using equation (18), u = G(x), and the power
series expansion above, the corresponding cdf is defined as

R

(
−log

[
1−G(x)

])
= R

( ∞∑
i=0

ui+1

i+ 1

)
= (1− e−αD)β . (20)

By applying another useful power series expansion

(1− y)a =

∞∑
k=0

(
a

k

)
(−1)k|y|, |y| < 1,
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we obtain

[1− F (x)]n−r =

n−r∑
j=0

(
n− r

j

)
(−1)jF j(x), (21)

which in turn will be used particularly to establish the order statistics for the EGRL
distribution.

2.6. Moments using power series expansions and quantile function. By
using equations (19) and (21), the mth moment of EGRL distribution can also be
defined as follows:

E(Xm) =

∫ ∞

0

xm g(x)

1−G(x)
r

(
−log

[
1−G(x)

])
dx =

∫ 1

0

Qm(u)
1

1− u
r

( ∞∑
i=0

ui+1

i+ 1

)
du

=αβ

∫ 1

0

Qm(u)
1

1− u
e−αD(1− e−αD)β−1du, (22)

where D =
∑∞

i=0
ui+1

i+1 . Here, Q(u) = G−1(u) = x is the quantile function (i.e., the

inverse of the cdf) in equation (9), so that u = G(x) and du = g(x)dx.

2.7. Moment generating function. Following the procedure used to obtain the
moments in the previous subsection, the mgf of EGRL distribution can be obtained
as

E(ebX) =

∫ ∞

0

ebx
g(x)

1−G(x)
r

(
−log

[
1−G(x)

])
dx =

∫ 1

0

ebQ(u) 1

1− u
r

( ∞∑
i=0

ui+1

i+ 1

)
du

=αβ

∫ 1

0

ebQ(u) 1

1− u
e−αD(1− e−αD)β−1du. (23)

2.8. Shannon entropy. The Shannon entropy ( [30]) is a measure to ascertain the
information provided by a random variable. The Shannon entropy for the random
variable X from the EGRL distribution is given by

ηS = −E

(
log

[
g(x)r(t)

1−G(x)

])
, (24)

where r(t) is used as a generator to attain the family of distributions in equation
(3).

The association between the Shannon entropy for the generator variable T which
has the support [0,∞] and the variableX from the beta-exponential-X family of dis-
tributions can be defined by using T = −log

[
1−G(X)

]
, and thus,X = G−1(1−e−T )

( [4]). This association also applies to our case for which the variable T is from the
exponentiated exponential distribution which has the support [0,∞] and the vari-
able X is from the EGRL distribution, since the exponentiated generalized family
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of distributions is a special case of the beta-exponential-X family of distributions.
Thus, the Shannon entropy above is defined as

ηS =− E

(
logf

[
G−1(1− e−T )

])
+ ηT − µT ,

=− E

(
logf

[
G−1(1− e−T )

])
+log

[
(αβ)−1

]
+ βΨ(β + 1)− (β − 1)Ψ(β)−Ψ(1)

+
Ψ(β + 1)−Ψ(1)

α
, (25)

where ηT = log
[
(αβ)−1

]
+ βΨ(β+1)− (β− 1)Ψ(β)−Ψ(1) is the Shannon entropy

for random variable T, µT = Ψ(β+1)−Ψ(1)
α is its mean and Ψ(.) is the digamma

function [4, p. 68].

2.9. Renyi entropy. The Renyi entropy ( [26]) is another widely used measure to
quantify the information in random variables. The Renyi entropy is an extension
of the Shannon entropy. The Renyi entropy of order γ for the random variable X
from the EGRL distribution is given by

ηR =
1

1− γ
log

∫ ∞

0

fγ(x)dx =
1

1− γ
log

∫ ∞

0

gγ(x)

1−Gγ(x)
rγ
(
−log

[
1−G(x)

])
dx

=
1

1− γ
log

∫ 1

0

gγ−1
[
Q(u)

]
1− uγ

rγ
( ∞∑

i=0

ui+1

i+ 1

)
du

=
αγβγ

1− γ
log

∫ 1

0

gγ−1
[
Q(u)

]
1− uγ

e−αγD(1− e−αD)γ(β−1)du, (26)

where g(x) is the pdf of RL distribution and D =
∑∞

i=0
ui+1

i+1 . The value of order γ
influences the information obtained from random variable X. The Renyi entropy
recovers the minimum entropy if γ = ∞, the maximum entropy if γ = 0, and
Shannon’s entropy if γ → 1 ( [27]).

2.10. Order statistics. Let X(1) = min{X1, X2, ..., Xn} and X(n) = max{X1, X2,
..., Xn} are the smallest and largest values of a random sample X1, X2, ..., Xn,
respectively. In line with Arnold et al. ( [5]), the pdf of the rth order statistic (i.e,
the rth smallest value) is defined by

f(r)(x) =

(
n

r

)
F r−1(x)[1− F (x)]n−rf(x). (27)

By applying the power series expansion in equation (23), the pdf of the rth order
statistic is defined by

f(r)(x) =

(
n

r

)
F r−1(x)[1− F (x)]n−rf(x)
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=
n!

(r − 1)!(n− r)!

n−r∑
j=0

(
n− r

j

)
(−1)jF j+r−1(x)f(x)

=
n!

(r − 1)!(n− r)!

n−r∑
j=0

(
n− r

j

)
(−1)jRj+r−1

(
−log

[
1−G(x)

])

× g(x)

1−G(x)
r

(
−log

[
1−G(x)

])
=

n!

(r − 1)!(n− r)!

n−r∑
j=0

(
n− r

j

)
(−1)jRj+r−1

( ∞∑
i=0

ui+1

i+ 1

)

× g(x)

1−G(x)
r

( ∞∑
i=0

ui+1

i+ 1

)

=
n!

(r − 1)!(n− r)!

n−r∑
j=0

(
n− r

j

)
(−1)j(1− e−D)β(j+r−1)

× g(x)

1−G(x)
e−αD(1− e−αD)β−1, (28)

where g(x) and G(x) are the pdf and cdf of RL distribution and D =
∑∞

i=0
ui+1

i+1 .

2.11. Linear representation. Corderio and Lemonte ( [8]) produce the linear
representations of equations (3) and (4). We summarize their procedure here by
using G(x) as the cdf of the baseline RL distribution. By applying the general-
ized binomial expansion in equation (23) twice in equation (4), the cdf of EGRL
distribution is defined as

F (x) =

(
1−

[
1−G(x)

]α)β

=

∞∑
k=0

(−1)k
(
β

k

)[
1−G(x)

]αk

=

∞∑
k=0

(−1)k
(
β

k

)
∞∑
j=0

(−1)j
(
αk

j

)
Gj(x) =

∞∑
j=0

∞∑
k=1

(−1)j+k+1

(
β

k

)(
αk

j + 1

)
Gj+1(x),

where Gj+1(x) is the cdf of RL distribution with a power parameter j+1. In other
words, the cdf of EGRL distribution can be defined as a linear combination of the
cdfs of RL distributions. By taking the derivative of Gj+1(x) with respect to x ≥ 0,
we obtain the linear representation of the pdf of EGRL distribution which is given
by

f(x) =

∞∑
j=0

∞∑
k=1

(−1)j+k+1

(
β

k

)(
αk

j + 1

)
(j + 1)g(x)Gj(x),

where g(x) is the pdf and G(x) is the cdf of the baseline RL distribution.
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3. Parameter Estimation

In this section, we present the parameter estimation procedure by means of
four methods: maximum likelihood estimation (MLE), least squares estimation
(LSE), weighted least squares estimation (WLSE), and Cramer von Mises estima-
tion (CVME). The LSE, WLSE, and CVME methods are included in the study as
an alternative to MLE due to their ease of use.

3.1. Maximum likelihood estimation. The log likelihood function of a random
sample X = (X1, X2, ..., Xn) from the EGRL distribution is given by

ℓ =nlog(α) + nlog(β) + nlog(θ)− nαlog(1− θ) +

n∑
i=1

log(θ2xi − 2θ + 1)

−αθ

n∑
i=1

xi + (α− 1)

n∑
i=1

log(θ2xi − θ + 1)

+(β − 1)

n∑
i=1

log

(
1−

[
(θ2xi − θ + 1)

1− θ
e−θxi

]α)
. (29)

The elements of score vector ( ∂ℓ
∂α ,

∂ℓ
∂β ,

∂ℓ
∂θ ) containing the first derivatives (stated

otherwise the gradients) of the log likelihood function with respect to parameters
α, β and θ are given below.

∂ℓ

∂α
=
n

α
− nlog(1− θ)− θ

n∑
i=1

xi +

n∑
i=1

log(θ2xi − θ + 1)

+(1− β)

n∑
i=1

ζαi
(
log(ζi)− θxi

)
eαθxi − ζαi

,

∂ℓ

∂β
=
n

β
+

n∑
i=1

log

(
1−

(
ζie

−θxi
)α)

,

∂ℓ

∂θ
=
n

θ
+

nα

1− θ
+

n∑
i=1

2(θxi − 1)

θ2xi − 2θ + 1
− α

n∑
i=1

xi + (α− 1)

n∑
i=1

2θxi − 1

θ2xi − θ + 1

+(1− β)

n∑
i=1

αxiζ
α
i

[
θ3xi − θ2(xi + 2) + 4θ − 1

]
(1− θ)(θ2xi − θ + 1)(eαθxi − ζαi )

. (30)

where ζi =
(θ2xi−θ+1)

1−θ .

Maximum likelihood estimates (MLEs) are described analytically by setting the
elements of the score vector equal to zero and solving for each parameter. The
resulting equations ∂ℓ

∂α = 0, ∂ℓ
∂β = 0 and ∂ℓ

∂θ = 0 need to be solved simultaneously.

Maximizing the log likelihood function with respect to parameters α, β and θ can
be performed using a reliable non-linear optimization technique such as Nelder and
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Mead (NM) or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Maxi-
mizing the log likelihood (or minimizing minus the log likelihood) function can be
achieved by using maxLik and optim subroutines of maxLik and stats packages in
R statistical software.

When maximizing the log likelihood function above, the initials of α, β, and θ
parameters must be specified. To easily obtain the initial for parameter θ by means
of using the usual RL distribution in equation (1), the initials of parameters α and
β were set to 1. The initial of parameter θ was obtained by taking the inverse of

the root obtained in µ = λ2

λ−1 (see [24, p. 250]), where parameter µ was replaced by

the sample mean x̄. The resulting initial for this parameter is θinit =
2

x̄+
√
x̄2−4x̄

.

We do not provide the analytical expressions of the entries of Hessian matrix for
the log likelihood function of EGRL distribution which are too complicated. The
standard errors of model parameters can be obtained by an approximate Hessian
matrix using the default option (i.e., the finite-difference approach) in the maxLik

package. The square root of diagonals for the inverse of minus the Hessian matrix
gives the standard errors of parameter estimates. However, the same standard
errors can be obtained by using summary function in the maxLik package. Note
that this approximation technique does not always converge for the standard errors
of model parameters. In such a case, nonparametric bootstrapping (NB; [10]) is a
reasonable alternative to estimate the standard errors of parameters. The NB can
also be used to obtain an estimate of bias to compare the performance of estimation
methods presented in this paper, which will be evaluated in the application section.

The estimates of model parameters and their standard errors can also be obtained
by maximizing a function of the cdf of EGRL distribution or a weighted form of
this function known as the method of (weighted) least squares estimation which
will be presented in the next subsection.

3.2. The method of (Weighted) Least-squares estimation. Based on Swain
et al. ( [33]), the least squares estimates of model parameters and their standard
errors can be attained by maximizing

−
n∑

i=1

[
F (x(i))−

i

n+ 1

]2
, (31)

where F (x(i)) is the cdf of the ordered random variables x(1) < x(2) < ... < x(n),
see also [28, p. 181]. Thus, the least squares estimates for the EGRL distribution
are obtained by maximizing

−
n∑

i=1

[(
1−

[
1−G(x(i))

]α)β − i

n+ 1

]2
, (32)

where F (x(i)) in equation (33) is replaced by the cdf of the ordered random variables
for the EGRL distribution. Here, G(x(i)) represents the cdf of the ordered random
variables for the baseline RL distribution in equation (2).
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The weighted least squares estimation (WLSE) can be more reliable than the
usual least squares estimation (LSE) when the data involve heteroscedasticity which
often occurs in the presence of outlier(s). The WLSE incorporates an additional
weight factor into the function above to quantify the importance of each observation
in the data when estimating model parameters. The WLSE is (often) less sensitive
to outliers when compared to the usual LSE1. The weighted least squares estimates
can be obtained by maximizing

−
n∑

i=1

w(i)

[
F (x(i))−

i

n+ 1

]2
, (33)

where w(i) = (n+1)2(n+2)
i(n−i+1) is the value of weight factor of the ith observation for

the data in increasing order, [28, p. 181]. Similar to the least squares estimates,
the weighted least squares estimates for the EGRL distribution are obtained by
maximizing

−
n∑

i=1

w(i)

[(
1−

[
1−G(x(i))

]α)β − i

n+ 1

]2
. (34)

Another popular estimation method that can easily be applied to estimate model
parameters for the EGRL distribution is the method of Cramer-Von-Mises estima-
tion (CVME), which will be detailed in the next subsection.

3.3. The method of Cramer-von-Mises estimation. The estimates of model
parameters using the Cramer-von-Mises estimation (CVME; [20]) is obtained by
maximizing another function of the cdf of EGRL distribution which is given by

− 1

12n
−

n∑
i=1

[
F (x(i))−

2i− 1

2n

]2
. (35)

Similar to equations (34) and (36), this function for the EGRL distribution can be
defined as

− 1

12n
−

n∑
i=1

[(
1−

[
1−G(x(i))

]α)β − 2i− 1

2n

]2
. (36)

The gradients and analytical expressions of Hessian matrices with respect to the
maximized functions using LSE, WLSE, and CVME methods are not presented
here, but, would be made available upon request.

4. Simulation Studies

This section presents two simulation studies, first of which aims to investigate
the performances of MLE, LSE, WLSE, and CVME methods for the EGRL distri-
bution with respect to the bias, precision, and accuracy measures given in Walther
and Moore ( [34]). The second simulation study is however set up to illustrate

1The estimates obtained by the WLSE are not always resistant to outliers. For more details
on the situations in which these estimates are sensitive to outliers, see Sohn et al. ( [32]).
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the potentiality of the new EGRL distribution in comparison to the some other
lifetime distributions listed in Table 2. In this simulation, we show that model

Table 2. Some selected lifetime distributions.

Distribution Author(s)
Rayleigh Rayleigh ( [25])
Exponentiated generalized Normal (EGN) Corderio et al. ( [7])
Exponentiated generalized Gumbel (EGGu) Corderio et al. ( [7])
Exponentiated generalized Ramos-Louzada (EGRL) (New)

fit indices should be used in conjunction with information criteria to detect the
best distribution in a set of distributions when analyzing the data. For the selec-
tion of best fitting models, the Cramer-von Mises (C*; [9]), Watson (W*; [35]),
Kuiper (K*; [17]) and Kolmogorov-Smirnov (KS*; [16,31]) goodness of fit statistics
and the log likelihood (ℓ), Akaike information criterion (AIC; [1, 2]), Consistent
Akaike information criterion (CAIC; [6]), Corrected Akaike information criterion
(AICc; [14]), Bayesian information criterion (BIC; [29]), and Hannan-Quinn infor-
mation criterion (HQIC; [12]) are used. The goodness of fit statistics are given
by

C∗ =
1

12n
+

n∑
k=1

[
2k − 1

2n
− F (X(k))

]2
,

W∗ =

√√√√C∗ − n

([ 1
n

n∑
k=1

F (X(k))
]
− 1

2

)2

,

K∗ =max
[k
n
− F (x(k))

]
+max

[
F (X(k))−

k − 1

n

]
,

KS∗ =max

[
F (X(k))−

k − 1

n
,
k

n
− F (X(k))

]
, (37)

where n is the sample size and F (x) is the cdf of the distribution under consideration
for which the values of random variable X are in increasing order, namely, x(1) <
x(2) < ... < x(n). The small values of these information criteria and test statistics
above imply better model fits. Similarly, the information criteria are given by

AIC =− 2ℓ+ 2p,

AICc =− 2ℓ+
2pn

n− p− 1
,

CAIC =− 2ℓ+ p
[
log(n) + 1

]
,
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BIC =− 2ℓ+ plog(n),

HQIC =− 2ℓ+ 2plog
[
log(n)

]
, (38)

where n is the sample size and p is the number of parameters in the model.
The simulation studies for two sets of population values of parameters for the

EGRL distribution comprise the following steps.

(1) (a) For the first simulation: Set α = 1, β = 1, and θ = 0.3 as the popula-
tion values of parameters for the EGRL distribution.

(b) For the second simulation: Set α = 1.2, β = 1.3, and θ = 0.3 as the
population values of parameters for the EGRL distribution.

(2) Set the sample size as N = 20, 100, or 500.
(3) Generate the values of EGRL distribution based on the population values

in Step 1 and the sample size in Step 2. The data generation from the
EGRL distribution is performed by using the automatic nonuniform ran-
dom variate generation process presented in Hörmann et al. ( [13]). This
procedure can easily be implemented using tdr.new and ur subroutines of
Runuran package in R statistical software.

(4) Obtain the estimates of model parameters using MLE, LSE, WLSE, and
CVME methods for the EGRL distribution in the first simulation and for
the distributions in Table 2 in the second simulation.

(5) Perform Steps 3-4 for S = 1000 times.
(6) (a) For the first simulation: For the EGRL distribution and each esti-

mation method, calculate the bias, precision, and accuracy measures
given in Walther and Moore ( [34]).

(b) For the second simulation: For each distribution and estimation method,
calculate the log likelihood value, the values of goodness of fit statistics,
and information criteria in equations (31), (39) and (40), respectively.

Notably, the measures in Step 6 (a) are obtained for each parameter of EGRL
distribution in S = 1000 simulations. For example, the bias, precision, and accuracy
measures for parameter α are given by

Bias(α) =
1

S

S∑
s=1

(α̂s − α), (39)

Precision(α) =
1

S

S∑
s=1

(α̂s − ᾱ)2, (40)

Accuracy(α) =
1

S

S∑
s=1

(α̂s − α)2, (41)

where α = 1 is the population value of α in Step 1 (a), α̂s is the estimate of param-

eter α in the sth simulation, and ᾱ = 1
S

∑S
s=1 α̂s for s = 1, 2, ..., 1000. Analogous

calculations are performed for parameters β and θ. These values are displayed in
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Table 3. Similarly, the values obtained in Step 6 (b) are presented in Tables 4, 5,
6, and 7 in each of which one of the estimation methods concerned are displayed in
turn.

In the first and second simulation studies, parameter estimation over the data
sets was performed by NM and BFGS algorithms, respectively. A data set was not
accepted for inclusion in S = 1000 simulation trials if at least one of the following
conditions occured. (1) The initial of parameter θ was not in the range of 0 and 0.5
or sample mean is smaller than 4 in line with θinit =

2
x̄+

√
x̄2−4x̄

(see page 11). (2)

The estimates of parameters were obtained outside the parameter space. For exam-
ple, when the estimate of parameter α > 0 for the EGN distribution is obtained as
α̂ < 0. (3) When the convergence criterion was not obtained for any of the distri-
butions under consideration. (4) When the log likelihood value for any distribution
in the set was obtained as minus infinity. Note that this last condition only applies
to the second simulation study. If at least one of the conditions above occurs in the
simulation, a different data was generated for the corresponding simulation trial.

Table 3 shows the values of bias, precision, and accuracy measures for each pa-
rameter of the EGRL distribution obtained from S = 1000 random datasets using
MLE, LSE, WLSE, and CVME methods with NM algorithm. A small value in
the table represents a small bias, a high precision, or a high accuracy measure.
This table displays that increasing the sample size eventually reduces the bias and
increases the precision and accuracy for parameters α, β, and θ of the EGRL distri-
bution using each estimation method. The performance of each estimation method
improves as the sample size increases. It is concluded that MLE outperforms other
estimation methods in terms of bias, precision, and accuracy measures.

Tables 4, 5, 6, and 7 show the average values of the (minus) log likelihood, good-
ness of fit statistics, and information criteria for each distribution under evaluation
using MLE, LSE, WLSE, and CVME methods with BFGS algorithm, respectively.
Based on these tables, one-parameter Rayleigh distribution does not provide enough
flexibility in modeling the data. Because model fit statistics and (minus) log likeli-
hood values for this distribution are larger than other distributions. It seems that
the EGRL distribution often has smaller, and thus, better model fit statistics and
(minus) log likelihood values when compared to other distributions. However, note
that, these goodness of fit statistics are biased themselves, since they do not take
the model complexity into account when choosing the best distribution in a set of
distributions. The information criteria like the AIC and BIC reduce this bias by
penalizing model complexity (i.e., penalizing the models containing unnecessarily
more parameters). For example, when estimating model parameters using MLE
for n = 20 in Table 4, the best distribution in the set according to the values of
model fit statistics is the EGGu distribution, while it is the second best distribu-
tion after the EGRL distribution based on the values of all the information criteria
under consideration. Sample size plays a crucial role for information criteria when
detecting the best distribution in a set. Because small samples tend to support
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Table 3. Bias, precision and accuracy measures for the parame-
ters of EGRL distribution

MLE LSE
α̂ Bias(α) Precision(α) Accuracy(α) α̂ Bias(α) Precision(α) Accuracy(α)

n = 20 0.968 -0.032 0.300 0.301 0.685 -0.315 0.045 0.144

n = 100 0.991 -0.009 0.267 0.267 0.838 -0.162 0.048 0.075

n = 500 1.011 0.011 0.102 0.103 0.952 -0.048 0.059 0.061

β̂ Bias(β) Precision(β) Accuracy(β) β̂ Bias(β) Precision(β) Accuracy(β)

n = 20 1.027 0.027 0.081 0.081 0.853 -0.147 0.060 0.082

n = 100 0.958 -0.042 0.030 0.031 0.892 -0.108 0.019 0.031

n = 500 0.966 -0.034 0.014 0.015 0.941 -0.059 0.012 0.016

θ̂ Bias(θ) Precision(θ) Accuracy(θ) θ̂ Bias(θ) Precision(θ) Accuracy(θ)

n = 20 0.336 0.036 0.006 0.007 0.368 0.068 0.005 0.009

n = 100 0.339 0.039 0.007 0.009 0.360 0.060 0.005 0.009

n = 500 0.317 0.017 0.006 0.007 0.326 0.026 0.006 0.006

WLSE CVME
α̂ Bias(α) Precision(α) Accuracy(α) α̂ Bias(α) Precision(α) Accuracy(α)

n = 20 0.689 -0.311 0.042 0.139 0.788 -0.212 0.053 0.098

n = 100 0.843 -0.157 0.046 0.071 0.868 -0.132 0.049 0.067

n = 500 0.953 -0.047 0.055 0.057 0.959 -0.041 0.058 0.059

β̂ Bias(β) Precision(β) Accuracy(β) β̂ Bias(β) Precision(β) Accuracy(β)

n = 20 0.849 -0.151 0.054 0.077 0.977 -0.023 0.088 0.089

n = 100 0.895 -0.105 0.019 0.030 0.921 -0.079 0.021 0.027

n = 500 0.946 -0.054 0.011 0.014 0.948 -0.052 0.012 0.015

θ̂ Bias(θ) Precision(θ) Accuracy(θ) θ̂ Bias(θ) Precision(θ) Accuracy(θ)

n = 20 0.378 0.078 0.004 0.010 0.362 0.062 0.005 0.008

n = 100 0.364 0.064 0.005 0.009 0.356 0.056 0.005 0.008

n = 500 0.327 0.027 0.005 0.006 0.325 0.025 0.006 0.006

more parsimonious (stated otherwise simple) models, while large samples tend to
support more complex models. The performance of EGRL distribution increase
better than that of other distributions in the set as the sample size increases. The
EGRL distribution in these tables is associated with the smallest (average) values
of information criteria for n = 500, regardless of the type of information criterion or
estimation method. Moreover, the EGRL distribution performs better than other
exponentiated generalized distributions, namely, the EGN and EGGu distributions,
in all cases where the sample size is n = 100 or n = 500.
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Table 4. The values of the goodness of fit statistics, (minus)
log likelihood, and information criteria for each distribution un-
der evaluation using MLE method.

Sample
size (n)

Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC

20 Rayleigh 0.44 0.43 0.37 0.28 57.00 115.99 116.21 117.99 116.99 116.18

EGRL 0.06 0.23 0.23 0.14 51.33 108.67 111.04 114.66 111.66 109.25

EGN 0.12 0.30 0.28 0.17 54.69 117.38 119.12 125.36 121.36 118.16

EGGu 0.06 0.22 0.23 0.13 51.57 111.14 113.81 119.13 115.13 111.92

100 Rayleigh 1.69 0.79 0.27 0.22 276.01 554.02 554.07 557.63 556.63 555.08

EGRL 0.06 0.22 0.10 0.06 251.62 509.23 509.63 520.05 517.05 512.40

EGN 0.38 0.52 0.20 0.12 268.78 545.57 545.84 559.99 555.99 549.78

EGGu 0.07 0.25 0.11 0.07 253.58 515.16 515.59 529.58 525.58 519.38

500 Rayleigh 7.74 1.66 0.24 0.20 1369.52 2741.03 2741.04 2746.25 2745.25 2742.68

EGRL 0.05 0.21 0.05 0.03 1255.06 2516.11 2516.19 2531.76 2528.76 2521.08

EGN 1.33 0.97 0.16 0.09 1328.86 2665.72 2665.77 2686.58 2682.58 2672.33

EGGu 0.15 0.35 0.07 0.04 1265.08 2538.17 2538.25 2559.03 2555.03 2544.78

Table 5. The values of the goodness of fit statistics, (minus)
log likelihood, and information criteria for each distribution un-
der evaluation using LSE method.

Sample
size (n)

Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC

20 Rayleigh 0.17 0.38 0.34 0.20 59.43 120.85 121.08 122.85 121.85 121.05

EGRL 0.04 0.21 0.22 0.12 51.14 108.27 110.65 114.26 111.26 108.86

EGN 0.06 0.23 0.24 0.13 60.90 129.81 131.54 137.79 133.79 130.59

EGGu 0.04 0.19 0.20 0.11 52.29 112.58 115.25 120.57 116.57 113.36

100 Rayleigh 0.63 0.77 0.26 0.14 288.01 578.01 578.05 581.62 580.62 579.07

EGRL 0.04 0.19 0.10 0.05 251.20 508.39 508.79 519.21 516.21 511.56

EGN 0.14 0.35 0.16 0.10 285.02 578.05 578.32 592.47 588.47 582.26

EGGu 0.04 0.18 0.09 0.05 256.61 521.23 521.65 535.65 531.65 525.44

500 Rayleigh 2.89 1.68 0.23 0.12 1437.51 2877.03 2877.03 2882.24 2881.24 2878.68

EGRL 0.04 0.18 0.04 0.02 1255.46 2516.92 2516.99 2532.56 2529.56 2521.88

EGN 0.54 0.70 0.13 0.08 1391.44 2790.87 2790.92 2811.73 2807.73 2797.49

EGGu 0.04 0.20 0.05 0.03 1286.80 2581.61 2581.69 2602.46 2598.46 2588.22

5. Application

This data contain N = 116 observations representing a mean ozone in parts per
billion at Rosevelt Island. These observations are obtained from the airquality

dataset in datasets package of R statistical software (version 4.2.2). Table 8 shows
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Table 6. The values of the goodness of fit statistics, (minus)
log likelihood, and information criteria for each distribution un-
der evaluation using WLSE method.

Sample
size (n)

Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC

20 Rayleigh 0.17 0.38 0.33 0.20 59.04 120.09 120.31 122.08 121.08 120.28

EGRL 0.05 0.21 0.22 0.12 50.92 107.83 110.21 113.82 110.82 108.42

EGN 0.06 0.24 0.24 0.13 60.61 129.22 130.96 137.21 133.21 130.00

EGGu 0.04 0.19 0.20 0.11 52.24 112.48 115.15 120.47 116.47 113.26

100 Rayleigh 0.63 0.76 0.26 0.15 286.51 575.02 575.06 578.62 577.62 576.07

EGRL 0.04 0.20 0.10 0.05 250.92 507.83 508.23 518.65 515.65 510.99

EGN 0.16 0.38 0.16 0.09 372.13 752.26 752.53 766.68 762.68 756.48

EGGu 0.04 0.18 0.09 0.05 256.45 520.91 521.33 535.33 531.33 525.12

500 Rayleigh 2.91 1.66 0.23 0.12 1428.25 2858.50 2858.51 2863.71 2862.71 2860.15

EGRL 0.04 0.19 0.04 0.02 1255.35 2516.69 2516.77 2532.34 2529.34 2521.65

EGN 0.56 0.72 0.15 0.10 3498.90 7005.81 7005.86 7026.67 7022.67 7012.42

EGGu 0.04 0.20 0.05 0.03 1286.84 2581.68 2581.76 2602.54 2598.54 2588.29

Table 7. The values of the goodness of fit statistics, (minus)
log likelihood, and information criteria for each distribution un-
der evaluation using CVME method.

Sample
size (n)

Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC

20 Rayleigh 0.18 0.39 0.34 0.20 59.83 121.66 121.88 123.65 122.65 121.85

EGRL 0.04 0.20 0.21 0.11 51.28 108.55 110.93 114.54 111.54 109.14

EGN 0.05 0.22 0.23 0.13 62.26 132.52 134.25 140.50 136.50 133.30

EGGu 0.03 0.18 0.19 0.10 52.73 113.45 116.12 121.44 117.44 114.23

100 Rayleigh 0.63 0.77 0.26 0.14 288.11 578.21 578.25 581.82 580.82 579.27

EGRL 0.04 0.19 0.09 0.05 251.28 508.57 508.96 519.38 516.38 511.73

EGN 0.14 0.35 0.16 0.09 283.67 575.33 575.61 589.75 585.75 579.55

EGGu 0.04 0.18 0.09 0.05 257.24 522.47 522.90 536.90 532.90 526.69

500 Rayleigh 2.89 1.68 0.23 0.12 1437.64 2877.29 2877.29 2882.50 2881.50 2878.94

EGRL 0.04 0.18 0.04 0.02 1255.44 2516.88 2516.95 2532.52 2529.52 2521.84

EGN 0.54 0.70 0.13 0.08 1391.87 2791.74 2791.79 2812.60 2808.60 2798.36

EGGu 0.04 0.20 0.05 0.02 1286.81 2581.61 2581.69 2602.47 2598.47 2588.23

the data and its descriptives. This dataset is heavily right skewed. The Q-Q plot in
Figure 3 and Shapiro-Wilk normality test results (W = 0.879, p < 0.001) show that
the dataset is not normally distributed. The boxplot in Figure 3 displays that the
dataset contains outliers. Table 9 shows the estimates of model parameters for the
Ozone data using each of the estimation methods. We provide the R code on how
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to obtain the estimates of model parameters using MLE in Appendix. The R code
for other estimation methods and distributions are not presented in Appendix, but,
would be made available upon request.

Table 8. The Ozone data and its descriptives.

Data: 41, 36, 12, 18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 14, 34, 6, 30,
11, 1, 11, 4, 32, 23, 45, 115, 37, 29, 71, 39, 23, 21, 37, 20, 12,
13, 135, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 7, 48, 35, 61, 79,
63, 16, 80, 108, 20, 52, 82, 50, 64, 59, 39, 9, 16, 78, 35, 66, 122,
89, 110, 44, 28, 65, 22, 59, 23, 31, 44, 21, 9, 45, 168, 73, 76, 118,
84, 85, 96, 78, 73, 91, 47, 32, 20, 23, 21, 24, 44, 21, 28, 9, 13,
46, 18, 13, 24, 16, 13, 23, 36, 7, 14, 30, 14, 18, 20

Std. Trimmed Median Std.
Mean deviationMedian mean abs. deviation Min Max Range Skewness Kurtosis error
42.13 32.99 31.50 37.80 25.95 1.00 168.00 167.00 1.21 1.11 3.06

Table 9. The estimates of model parameters using MLE, LSE,
WLSE, and CVME for the Ozone data.

MLE LSE

Models α β µ θ α β µ θ
Rayleigh 37.774 – – – 28.295 – – –

EGRL 1.423 1.795 – 0.024 1.061 1.514 – 0.030

EGN 1.542 123.522 -114.284 84.077 3.237 115.191 -56.913 111.820

EGGu 0.182 0.602 16.227 7.177 0.115 0.648 12.322 5.188

WLSE CVM

Models α β µ θ α β µ θ
Rayleigh 28.735 – – – 28.288 – – –

EGRL 2.999 1.654 – 0.011 1.893 1.551 – 0.017

EGN 0.452 218.532 -179.939 47.622 3.306 109.547 -51.712 110.068

EGGu 0.131 0.761 10.899 5.250 0.114 0.661 12.198 5.031

Figure 4 shows the pdfs, cdfs and survival and hazard rate functions for each
distribution using MLE. This figure shows that the EGRL and EGGu distributions
fit the data better than the Rayleigh and EGN distributions. Table 10 shows that
the distribution of the observed Ozone data does not deviate significantly from the
EGRL and EGGu distributions, but the distribution of the data differs from the
Rayleigh and EGN distributions. This can be tested by the values of Kolmogorov-
Smirnov (KS∗) test statistics. For doing this, the critical value for the KS test
is determined for α = 0.05, that is, KSt = 1.36√

n
= 1.36√

116
= 0.126. Therefore, for

example, KS∗ = 0.085 < KSt = 0.126 and KS∗ = 0.065 < KSt = 0.126 indicate
that the distribution of the Ozone data is not significantly different from the EGRL
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Figure 3. The Q-Q plot and box plot for the Ozone data.

EGGu EGN EGRL Rayleigh

0.000

0.005

0.010

0.015

0.020

0 50 100 150
x

f(
x)

Probability density functions

0.00

0.25

0.50

0.75

1.00

0 50 100 150
x

F
(x

)

Empirical Cumulative 
 Density Function (black dashed lines)

0.00

0.25

0.50

0.75

1.00

0 50 100 150
x

S
(x

)

Empirical Survival 
 Function (black dashed lines)

0.0

0.5

1.0

1.5

2.0

0 50 100 150
x

H
(x

)

Hazard rate functions

Figure 4. The pdf, cdf, survival and hazard rate functions for the
Ozone data.

and EGGu distributions, respectively, when parameter estimation is performed by
MLE. However, KS∗ = 0.248 > KSt = 0.126 and KS∗ = 0.214 > KSt = 0.126
mean that the distribution of the data significantly different from the Rayleigh and
EGN distributions, respectively, when parameter estimation is performed by MLE.
Table 10 also shows that the EGGu distribution provides the smallest goodness of
fit statistics, regardless of the method used for parameter estimation. However, as
noted in the introduction, these goodness of fit statistisc are biased as they do not
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take the model complexity into account. Information criteria reduce this bias by
considering both the fit and complexity of the model being evaluated. In Table 10,
the values of information criteria indicate that the EGRL distribution has a better
balance between the model fit and complexity when compared to Rayleigh, EGN,
and EGGu distributions. Thus, we conclude that the EGRL distribution can be
considered as an alternative distribution in the exponential generalized family of
distributions when analyzing positively skewed data using MLE, LSE, WLSE, and
CVME for parameter estimation.

Table 10. The values of the goodness of fit statistics, (minus)
log likelihood, and information criteria for each distribution under
evaluation using MLE, LSE, WLSE, and CVME for the Ozone
data.

MLE
Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC
Rayleigh 2.17 1.03 0.31 0.25 561.99 1125.97 1126.01 1129.73 1128.73 1127.09

EGRL 0.12 0.33 0.14 0.09 541.40 1088.79 1089.01 1100.05 1097.05 1092.15

EGN 0.51 0.66 0.21 0.14 556.53 1121.06 1121.42 1136.08 1132.08 1125.53

EGGu 0.06 0.24 0.12 0.07 540.46 1088.91 1089.27 1103.93 1099.93 1093.39

LSE
Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC
Rayleigh 0.87 0.93 0.31 0.18 585.69 1173.38 1173.41 1177.13 1176.13 1174.50

EGRL 0.08 0.28 0.12 0.06 542.15 1090.30 1090.52 1101.56 1098.56 1093.65

EGN 0.32 0.55 0.20 0.11 558.28 1124.56 1124.92 1139.57 1135.57 1129.03

EGGu 0.03 0.18 0.08 0.04 540.99 1089.98 1090.34 1105.00 1101.00 1094.45

WLSE
Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC
Rayleigh 0.87 0.94 0.31 0.17 582.99 1167.98 1168.01 1171.73 1170.73 1169.10

EGRL 0.09 0.30 0.13 0.07 541.58 1089.15 1089.37 1100.41 1097.41 1092.51

EGN 0.39 0.62 0.22 0.12 556.00 1120.00 1120.35 1135.01 1131.01 1124.46

EGGu 0.03 0.18 0.10 0.05 540.28 1088.56 1088.92 1103.57 1099.57 1093.03

CVME
Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC
Rayleigh 0.87 0.93 0.31 0.18 585.74 1173.48 1173.51 1177.23 1176.23 1174.59

EGRL 0.08 0.28 0.12 0.06 541.96 1089.92 1090.14 1101.18 1098.18 1093.28

EGN 0.32 0.55 0.20 0.11 558.29 1124.59 1124.95 1139.60 1135.60 1129.06

EGGu 0.03 0.17 0.08 0.04 540.98 1089.96 1090.32 1104.98 1100.98 1094.43

Goodness of fit statistics and information criteria are originally created to com-
pare the performance of models, but not to compare the performance of estimation
methods. Therefore, we do not recommend using the results in Table 10 to compare
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the performance of the methods in estimating the parameters of the EGRL distri-
bution. For doing this, we used a bootstrap estimate of bias presented in Efron and
Tibshirani ( [10]).

Let η = (α, β, θ) be the vector containing the parameters of EGRL distribution.
Then, the bootstrap estimate of bias for each estimation method is calculated as
follows:

(1) Create B = 1000 bootstrap samples by resampling with replacement from
the original data.

(2) Obtain the estimate of parameter vector η for each of the bootstrap samples.
(3) Obtain the overall bootstrap estimate of parameter vector η, that is, η∗,

by averaging the estimates among the bootstrap samples. The standard
errors of parameter estimates (i.e., SE∗

B) are obtained by taking the square
root of diagonals of the covariance matrix for the estimates in the bootstrap
samples.

(4) Calculate the bootstrap estimate of bias for parameter vector η, that is,
BiasB = |η∗ − η̂|, where η̂ is the vector of the usual estimates obtained for
the original data using MLE, LSE, WLSE, or CVME.

Table 11 shows the performance evaluation of each estimation method in esti-
mating the parameters of the EGRL distribution for the Ozone data. Efron and
Tibshirani ( [10]) state that the bias can be ignored if BiasB

SE∗
B

≤ 0.25. Therefore,

based on the results in Table 11, CVME outperforms other estimation methods
for this particular example as it has the ratios smaller than 0.25 when estimating
parameters α, β, and θ. In line with Efron and Tibshirani ( [10]), the bias-adjusted
estimates (BAEs) are also provided for each estimation method using 2η̂−η∗. How-
ever, caution should be taken when using the bias-adjusted estimates in place of
the usual estimates, as biases are more difficult to estimate than standard errors
and correcting bias may produce higher standard errors [10, p. 138]. While the
bias-adjusted estimates are reasonably close to the usual estimates for MLE and
CVME, these estimates are not close to the usual estimates for LSE and WLSE.
The WLSE even produces a negative bias-adjusted estimate for parameter θ.

In summary, it is concluded that CVME performs better than other estimation
methods in analyzing the Ozone data based on nonparametric bootstrapping bias
assessment. In this sense, MLE also provides a reasonable set of parameter esti-
mates. However, LSE and WLSE do not perform well when compared to MLE and
CVME for analyzing the Ozone data using the EGRL distribution.

6. Discussion

In this study, we introduced a new distribution called the exponentiated gen-
eralized Ramos-Louzada distribution involving three parameters. We used four
estimation methods (i.e., the MLE, LSE, WLSE, and CVME) for estimation. We
assess the performance of these methods for the EGRL distribution by means of
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Table 11. Performance evaluation of the estimation methods for
the Ozone data in terms of the bias measure using nonparametric
bootstrapping.

Method α β θ
MLE (η̂) 1.423 1.795 0.024
NB (η∗) 1.016 1.830 0.046
SE∗

B 0.411 0.231 0.035
BiasB = |η∗ − η̂| 0.407 0.035 0.022
Ratio = BiasB

SE∗
B

0.990 0.152 0.629

BAE = 2η̂ − η∗ 1.830 1.760 0.002
LSE (η̂) 1.061 1.514 0.030
NB (η∗) 1.783 1.564 0.020
SE∗

B 0.431 0.225 0.012
BiasB = |η∗ − η̂| 0.722 0.050 0.010
Ratio = BiasB

SE∗
B

1.675 0.222 0.833

BAE = 2η̂ − η∗ 0.339 1.464 0.040
WLSE (η̂) 2.999 1.654 0.011
NB (η∗) 2.060 1.735 0.023
SE∗

B 0.836 0.217 0.023
BiasB = |η∗ − η̂| 0.939 0.081 0.012
Ratio = BiasB

SE∗
B

1.123 0.373 0.522

BAE = 2η̂ − η∗ 3.938 1.573 -0.001
CVME (η̂) 1.893 1.551 0.017
NB (η∗) 1.792 1.602 0.020
SE∗

B 0.439 0.233 0.013
BiasB = |η∗ − η̂| 0.101 0.051 0.003
Ratio = BiasB

SE∗
B

0.230 0.219 0.231

BAE = 2η̂ − η∗ 1.994 1.500 0.014

using bias, precision, and accuracy measures, the goodness of fit statistics, and in-
formation criteria. To attain this objective, we first generate the datasets from the
EGRL distribution in two simulations with varying values of sample size. Then,
in the first simulation, we evaluate the performance of each estimation method for
the EGRL distribution by means of using bias, precision, and accuracy measures.
We obtain smaller bias and better precision and accuracy measures for each pa-
rameter of EGRL distribution as the sample size increases. It is concluded that
MLE outperforms other estimation methods as the sample size increases. Second
simulation study is conducted to evaluate the performance of a set of distributions
for each estimation method separately. It is concluded that the performance of
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EGRL distribution increase better than that of other distributions as the sample
size increases when the data in fact follow the EGRL distribution.

The EGRL distribution is a flexible distribution that can be used to improve
the model fit when compared to other exponentiated generalized distributions such
as EGN and EGGu distributions. However, caution should be taken when using
this distribution to analyze datasets in some certain circumstances. We are com-
pelled to highlight two main limitations of the EGRL distribution when using it in
conjunction with the estimation methods and information criteria presented in this
paper. First, the performance of the EGRL distribution on modeling the data de-
pends on the method utilized for estimation. For example, the methods presented
in this paper might produce biased parameter estimates and their standard errors
in the case of the data contain many missing values and/or outliers. In such cases,
a different estimation method dealing with missing values and/or outliers better
should be preferred over these estimation methods. Second, the AIC is prone to
overfitting, that is, falsely choosing more complicated distributions containing more
parameters over the simpler (stated otherwise more parsimonious) distributions for
small samples. We do not suggest the use of the EGRL distribution for small sam-
ples, since it contains relatively more parameters when compared to the usual RL
distribution. In the same sense, the AIC should not be used as a decision crite-
rion when the set of distributions contains the EGRL distribution for small samples.
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formed by Yasin Altınışık. All authors read, commented, and approved the final
article.

Declaration of Competing Interests The authors declare that they have no
competing interest.

References

[1] Akaike, H., Information theory and an extension of the maximum likelihood principle, In B.N.

Petrov & F. Csaki (Eds.), Proc. 2nd Int. Symp. Information Theory, Budapest: Akademiai
Kiado, (1973), 267-281.

[2] Akaike, H., A new look at the statistical model identification, IEEE Transaction on Auto-

matic Control, 19 (1974), 716-723. http://dx.doi.org/10.1109/TAC.1974.1100705
[3] Al-Mofleh, H., Afifty, A., Ibrahim, N. A., A new extended two-parameter distribution: Prop-

erties, estimation methods and applications in medicine and geology, Mathematics, 8 (2020),

1578. http://dx.doi.org/10.3390/math8091578
[4] Alzaatreh, A., Lee, C., Famoye, F., A new method for generating families of continuous

distributions, METRON, 71 (2013), 63-79. http://dx.doi.org/10.1007/s40300-013-0007-y

[5] Arnold, B. C., Balakrishnan, A. N., Nagaraja, H. N., A First Course in Order Statistics, New
York: Wiley-Interscience, 1992.

[6] Bozdogan, H., Model selection and Akaike’s information criterion (AIC): The general theory

and its analytical extensions, Psychometrika, 52 (1987), 345-370. http://dx.doi.org/10.
1007/BF02294361

http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.3390/math8091578
http://dx.doi.org/10.1007/s40300-013-0007-y
http://dx.doi.org/10.1007/BF02294361
http://dx.doi.org/10.1007/BF02294361


EGRL DISTRIBUTION 101

[7] Corderio, G. M., Ortega, E. M. M., Cunha, D. C. C., The exponentiated generalized class of

distributions, Journal of Data Science, 11 (2013), 1-27. http://dx.doi.org/10.6339/JDS.

2013.11(1).1086

[8] Corderio, G. M., Lemonte, A. J., The exponentiated generalized Birnbaum-Sanders distribu-

tion, Applied Mathematics and Computation, 247 (2014), 762-779. http://dx.doi.org/10.

1016/j.amc.2014.09.054

[9] Cramer, H., On the composition of elementary errors, Scandinavian Actuarial Journal, 1

(1928), 13-74. http://dx.doi.org/10.1080/03461238.1928.10416862

[10] Efron, B., Tibshirani, R. J., An Introduction to the Bootstrap, New York: Chapman & Hall.
[11] Gupta, R. D., Kundu, D., Exponentiated exponential family: An alternative to gamma

and Weibull distributions, Biometrical Journal, 43 (2001), 117-130. http://dx.doi.org/10.

1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R

[12] Hannan, E. J., Quinn, B. G., The determination of the order of an autoregression, Journal of

the Royal Statistical Society, Series B, 41 (1979), 190-195. http://www.jstor.org/stable/
2985032
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Appendix

The R (version 4.2.2) code used to estimate the parameters of the EGRL distri-
bution using MLE is given below.

library(maxLik)

set.seed(111)

# The Ozone data

xi <- c(41, 36, 12, 18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 14, 34,

6, 30, 11, 1, 11, 4, 32, 23, 45, 115, 37, 29, 71, 39, 23, 21, 37,

20, 12, 13, 135, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 7, 48, 35,

61, 79, 63, 16, 80, 108, 20, 52, 82, 50, 64, 59, 39, 9, 16, 78, 35,

66, 122, 89, 110, 44, 28, 65, 22, 59, 23, 31, 44, 21, 9, 45, 168, 73,

76, 118, 84, 85, 96, 78, 73, 91, 47, 32, 20, 23, 21, 24, 44, 21, 28,

9, 13, 46, 18, 13, 24, 16, 13, 23, 36, 7, 14, 30, 14, 18, 20)

# Sample size

n <- length(xi)

# Determining the initials for the parameters, respectively.

alphainit <- 1

betainit <- 1

thetainit<-2/(mean(xi)+sqrt(mean(xi)^2-4*mean(xi)))

# Maximizing the log likelihood function.

logLik <- function(param) {

alpha <- param[1]

beta <- param[2]
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theta <- param[3]

# The four lines below are used to ensure that the estimates updated

# in the BFGS algorithm are in line with the parameter spaces.

if (alpha < 0) {alpha <- 0.0001}

if (beta < 0) {beta <- 0.0001}

if (theta < 0) {theta <- 0.0001}

if (theta > 0.5) {theta <- 0.5}

gx <- (((1+theta^2*xi-2*theta)*(theta))/(1-theta))*(exp(-theta*xi))

Gx <- 1-((1+theta^2*xi-theta)/(1-theta))*(exp(-theta*xi))

ll <- n*log(alpha)+n*log(beta)+sum(log(gx))+(alpha-1)*(sum(log(1-Gx)))+

(beta-1)*sum(log(1-((1-Gx)^(alpha))))

}

# Obtaining the results of the BFGS algorithm. Here,

# control = list(iterlim = 100000) is used to ensure successfull

# convergence of the BFGS algorithm.

model <- maxLik(logLik, start = c(alphainit, betainit, thetainit),

method = "BFGS", control = list(iterlim = 100000))

# Displaying the results

summary(model)

--------------------------------------------

Maximum Likelihood estimation

BFGS maximization, 44 iterations

Return code 0: successful convergence

Log-Likelihood: -541.3966

3 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

[1,] 1.42313 2.40164 0.593 0.553

[2,] 1.79495 0.24685 7.271 3.56e-13 ***

[3,] 0.02424 0.04196 0.578 0.563

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

--------------------------------------------
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