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GENERALIZED FIDUCIAL INFERENCE FOR THE
CHEN DISTRIBUTION
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Abstract: The fiducial inference idea was firstly proposed by Fisher [8] as a powerful method in statistical
inference. Many authors such as Weeranhandi [24] and Hannig et. al. [12] improved this method from different
points of view. Since the Bayesian method has some deficiencies such as assuming a prior distribution when
there was little or no information about the parameters, the fiducial inference is used to overcome these
adversities. This study deals with the generalized fiducial inference for the shape parameters of the Chen’
s two-parameter lifetime distribution with bathtub shape or increasing failure rate [4]. The method based
on the inverse of the structural equation which is proposed by Hannig et. al. [12] is used. We propose the
generalized fiducial inferences of the parameters with their confidence intervals. Then, these estimations
are compared with their maximum likelihood and Bayesian estimations. Simulation results show that the
generalized fiducial inference is more applicable than the other methods in terms of the performances of
estimators for the shape parameters of the Chen distribution. Finally, a real data example is used to illustrate
the theoretical outcomes of these estimation procedures.

Key words : Bayesian inference, Generalized fiducial inference, Interval estimation, Chen distribution,
Point estimation.

1. Introduction

The fiducial idea is firstly proposed by Fisher [8] as a powerful method in statistics. It is known

that assuming a prior distribution in the case of insufficient information about the parameters

causes adversities in Bayesian inference. The main idea of Fisher [8] with the fiducial method was

to overcome this deficiency in the Bayesian framework. Then, some deficiencies in the fiducial

inference and the philosophical concerns regarding the interpretation of fiducial probability were

handled by various authors (See Zabell [28] for more details.). Thus, the idea of fiducial inference

was improved by various authors. Recently, Hannig [11, 10] handled generalized fiducial inference.

Then, Hannig et al. [12] defined the generalized fiducial inference method based on the inverse

of the structural equation. The generalized fiducial inference is actually similar to the likelihood

approach. It differs from the likelihood method by switching the role of the parameters and the

observed data.

In statistics theory, there are several applications of fiducial inference. For example; Wandler and

Hannig [21, 22] considered generalized fiducial inference on the largest mean of a multivariate nor-

mal distribution and also inference on the parameters and the extreme quantiles of the generalized

Pareto distribution, respectively. Wang et al. [23] handled fiducial inference to construct prediction

intervals for an arbitrary probability distribution. Further; O’Reilly and Rueda [17] studied the

truncated exponential distribution, Li and Xu [15] studied inference of Birnbaum-Saunders distri-

bution, Yan and Liu [27] studied generalized exponential distribution with the fiducial inference

method.
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On the other hand, Chen [4] proposed a two-parameter distribution with bathtub shaped or
increasing hazard function. Chen [4] proposed using this model to analyze the lifetime datasets
flexibly. It has the following probability density (pdf), distribution (cdf) and failure rate functions

f(x;λ,β) = λβxβ−1ex
β

eλ(1−e
xβ ), x > 0, λ, β > 0,

F (x;λ,β) = 1− eλ(1−e
xβ ),

and
h(x;λ,β) = λβxβ−1ex

β

.

The Chen distribution has a bathtub shape failure rate when β < 1 and also has an increasing
failure rate function when β ≥ 1 (see Figure 1).
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Figure 1. Failure rate functions when λ= 0.5

Hence it provides an appropriate conceptual model for some electronic and mechanical products
as well as the lifetime of humans. In addition to its positively skewed shape, it also has some other
flexible properties (Chen, [4]). Further;

� It leads to the exponential power distribution when λ= 1.
� If X ∼CH(λ,β), then Y = (eX

β − 1)∼Exp(λ) and Y = (eX
β − 1)

1
θ ∼Weibull(λ, θ).

� It leads to the Gompertz(1, λ) distribution when β = 1.
Many authors handled the Chen distribution in terms of statistical inference. For instance; Wu et

al. [25] studied the estimation of its shape parameter. Then, Wu [26] studied its parameter estima-
tions under progressive censoring. Sarhan et al. [19] obtained estimations of its parameters. Rastogi
and Tripathi [18] handled parameter estimations under hybrid censored data. Ahmed [2] obtained
Bayesian estimations and compared them with non-Bayesian estimations under progressive Type-
II censoring scheme. Kayal et. al. [14] handled Chen distribution under progressive censoring and
Kayal et al. [13] studied inference of its parameters under progressive first-failure censoring.

It should be noted that all cited references are based on classical and Bayesian estimation
methods for both complete and censored data sets. The generalized fiducial inference method has
never been considered in comparative inference studies based on the Chen distribution. It is known
that Newton-Raphson (NR) method can provide unsatisfactory performances explained by the
fact that it does not converge in some cases. Since the MLE of β needs some iterative methods
such as NR, alternative inference methods for the parameters of the Chen distribution are needed
to evaluate. On the other hand, determining a prior distribution in the case of insufficient prior
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information about the parameters affects the Bayesian inference performance. Consequently, the
generalized fiducial method can be worthwhile to overcome these adversities.

In this study, we consider the generalized fiducial inference (GFI) method based on the inverse
of the structural equation which is proposed by Hannig et. al. [12]. We obtain the estimation of
the unknown parameters of the Chen distribution with the GFI method as an alternative to the
maximum likelihood estimation (MLE) and Bayesian estimation methods. We also provide the
MLE and Bayesian estimation methods to compare the performances of the estimates and their
corresponding confidence intervals. All theoretical outcomes are illustrated with simulation studies
and a real-data example.

2. Maximum likelihood estimations (MLE)
The likelihood function of the observed sample from the Chen distribution is given as

L (x, λ, β) = λnβne(β−1)
∑n
i=1 log(xi)e

∑n
i=1 x

β
i eλ

∑n
i=1

(
1−ex

β
i

)
and the corresponding log-likelihood function is given as

`(x, λ, β) = n log(λ) +n log(β) + (β− 1)

n∑
i=1

log(xi) +

n∑
i=1

xβi +λ

n∑
i=1

(
1− ex

β
i
)
.

To obtain the MLEs of the parameters, denoted by λ̂ and β̂ we should equate the partial derivates
of `(x, λ, β) to zero with respect to λ and β respectively. Then we obtain the MLE of λ as given
in the following

λ̂=
n∑n

i=1

(
ex
β̂
i − 1

) ,
where β̂ is the solution of the following non-linear equation

ξ(β) =
n

β
+

n∑
i=1

log(xi) +
n∑
i=1

xβi log(xi)−
n
∑n

i=1

(
ex
β
i xβi log(xi)

)
∑n

i=1

(
ex
β
i − 1

) .

Since β̂ is a fixed point solution of the nonlinear equation ξ(β), it can be obtained by using
numerical methods such as the Newton-Raphson algorithm. Further, the confidence interval for λ
and β can be obtained by the following asymptotic normality when the MLE and its large sample
theory exist. That is

(λ̂, β̂)T −→N
(
(λ,β)T , I−1n

)
,

where

I−1n =−

(
∂2`
∂λ2

∂2`
∂λ∂β

∂2`
∂β∂λ

∂2`
∂β2

)−1
=

(
Var(λ̂) Cov(λ̂, β̂)

Var(β̂)

)
.

The inverse of the expected Fisher information matrix can be obtained by mle.tools package
[16] in R [6] software. The presentation of the derivatives is skipped for the sake of simplicity.

Thus, the asymptotic 100(1−α)% confidence intervals (ACI) for λ and β are

Iλ : λ̂± z1−α/2
√

Var(λ̂) and Iβ : β̂± z1−α/2
√

Var(β̂),

where zδ denotes 100δ% percentile of the standard normal distribution.
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3. Generalized fiducial inference (GIF)
The main structure of the generalized fiducial inference (GFI) is similar to the likelihood method.

It differs from the likelihood method by switching the roles of the data x and the model parameters
θ. Let suppose that the data generating equation be

x=G(U,θ),

where x is the data, θ is the parameters, U is a complete known random vector and G is called
the structural equation. It is seen from Eq. (3), the distribution of x is determined by using the
parameters θ and random vector U . Under some differentiability conditions, Hannig et al. [12]
showed that the generalized fiducial distribution for θ is absolutely continuous with the density

fF (θ) =
L(x | θ)J(x;θ)∫

L (x | θ′)J (x;θ′) dθ′
,

where L(x|θ) denotes the joint likelihood function of observed data and

J(x, θ) =
∑

(i1,...,ip)

∣∣∣det
((

∂
∂u
G(u,θ)

)−1 ∂
∂θ
G(u, θ)

)∣∣∣
u=G−1(x,θ)

(3.1)

where the above sums go
(
n
p

)
over of p-tuples of indexes i= 1≤ i1 < · · ·< ip ≤ n, ∂G(u, θ)/∂θ and

∂G(u, θ)/∂u are respectively n×p and n×n Jacobian matrices. For the Chen distribution, we have

Ui = F (xi;λ,β) , i= 1, . . . , n, (3.2)

where F (xi;λ,β) ≡ 1− eλ
(
1−ex

β
)

is the distribution function of the Chen model and Ui denotes
the sample from uniform distribution on the range (0,1). Further, the data generating equation,
x=G(U,θ), can be obtained from Eq. (3.2) and the ith component xi =G(Ui, λ, β) can be obtained
as

xi =
[
ln
(
1− (1/λ) ln(1−u)

)]1/β
,

and we have

∂Gi

∂λ

∣∣∣∣
ui=1−eλ

(
1−exβ

) =
1

λβ

(
e−x

β
i − 1

)
x1−β
i and

∂Gi

∂β

∣∣∣∣
ui=1−eλ

(
1−exβ

) =−xi ln(xi)

β
. (3.3)

Then, by replacing (3.3) in (3.1) we obtain

J(x;λ,β) =
1

λβ2

∑
1≤i<j≤n

|g(xi, xj, λ)| ,

where
g(xi, xj, β) = x1−β

j

(
e−x

β
j − 1

)
xi ln(xi)−x1−β

i

(
e−x

β
i − 1

)
xj ln(xj)

in that J(x;λ,β) plays a similar role with the prior distribution in the Bayesian inference and it
reveals like a data dependent prior. The joint likelihood function of the observed data is obtained
as

fF (λ,β)∝ λn−1βn−2e(β−1)
∑n
i=1 log(xi)e

∑n
i=1 x

β
i eλ

∑n
i=1

(
1−ex

β
i

) ∑
1≤i<j≤n

|g(xi, xj, β)| .

Thus, the conditional fiducial density function of λ can be obtained in form of the gamma density
as

fF (λ|β,x) = λn−1e−λ
∑n
i=1

(
e
x
β
i −1
)
GA

(
n,

n∑
i=1

(
ex
β
i − 1

))
.
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Then, the conditional fiducial density function of β is

fF (β|λ,x) = βn−2e(β−1)
∑n
i=1 log(xi)+

∑n
i=1 x

β
i +λ

∑n
i=1

(
1−ex

β
i

) ∑
1≤i<j≤n

|g(xi, xj, β)| .

It is clearly seen that estimates of the parameters can be obtained by using the Gibbs algorithm
since their conditional densities are obtained. The conditional estimates of λ can be easily generated
from the gamma density. However, the density of β in fF (β|λ,x) can not be reduced analytically to
well known distributions and therefore it is not possible to sample directly by standard methods.
The conditional posterior density of β is observed that, it is likely to be the Gaussian distribution.
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Figure 2. The posterior fiducial density of β for n= 20 (up) and n= 50 (down)

In this case, we propose to use the Metropolis-Hasting (M-H) sampling in Gibbs algorithm with
normal proposal distribution (see Figure 2) as suggested by Tierney [20]. The Gibbs algorithm
with the M-H sampling for the fiducial inference of the Chen distribution can be given as follows:

� Step 1: Start by using the initial values of λ(0) and β(0).
� Step 2: Set t= 1.

� Step 3: Generate λ(t) from GA

(
n,
∑n

i=1

(
ex
β
i − 1

))
.

� Step 4: Draw a candidate β(t) from fF (β|λ,x) by using Metropolis-Hastings methods with
normal proposal.

� Step 5: Repeat 2-4, M times.
It is known that a Markov chain algorithm naturally generates autocorrelated samples (Zhang,

[29]) and so we should use a thinning operation to reduce the produced autocorrelation. We discard
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the first B0 values as burn-in period and take every L−th (as an integer) observation from the
remaining (M −B0) variates as an independent and identically distributed (i.i.d.) observation in
thinning procedure. Thus, we obtain M

′
= (M−B0)/L i.i.d. observations. If we denote the thinning

procedure applied observations as α
(t
′
)

i and λ
(t
′
)

i for i = (B0 + L,B0 + 2L,B0 + 3L, · · · ,M), we
obtain the fiducial inferences of the parameters as

λ̂F =
1

M ′

M∑
i=B0+L

λ
(t
′
)

i and β̂F =
1

M ′

M∑
i=B0+L

β
(t
′
)

i .

Then, the 100(1−α)% the fiducial cofidence intervals are

I λ̂F
∼=
[
λ̂α/2, λ̂1−α/2

]
and I β̂F

∼=
[
β̂α/2, β̂1−α/2

]
,

where λ̂α and β̂α are the 100α%th quantile of the λ
(t
′
)

i and β
(t
′
)

i .

4. Bayesian inference
This section deals with the Bayesian inference to provide comparative estimates for the fiducial

and maximum likelihood inference of the parameters. Since J(x;λ,β) plays a similar role with
the prior distribution in the Bayesian context and similarity of the mathematical structure of the
fiducial inference process, the Bayesian inference method is handled as an alternative inference
procedure. For this purpose, we first assume that the unknown parameters λ and β follow inde-
pendent gamma priors such that π(λ)∼GA(a1, b1) and π(β)∼GA(a2, b2) with density functions
are given as in the following

π(λ)∝ λa1−1e−λb1 and π(β)∝ βa2−1e−βb2 ,

where hyper parameters ai and bi, (i= 1,2) are assumed as non-negative and known.
The joint posterior density function of data, λ and β can be obtained by using the observed

sample and the prior distributions for the parameters as in the following

L(X,λ,β) =L(X|λ,β)π(λ)π(β)

and the joint posterior density of λ and β given data is obtained by

L(λ,β|X) =
L(X|λ,β)π(λ)π(β)∫∞

0

∫∞
0
L(X|λ,β)π(λ)π(β)dλdβ

and for the Chen distribution we have the following joint posterior density of the parameters

L(λ,β|X)∝ λn+a1−1βn+a2−1e−β
(
b2−

∑n
i=1 log(xi)

)
e
∑n
i=1 x

β
i e
−λ

(
b1+

∑n
i=1

(
e
x
β
i −1
))
.

Then, it is easily seen that the conditional posterior density functions of λ and β, denoted by
fB(λ|β,x) and fB(β|λ,x), are obtained as

fB(λ|β,x)∝ λn+a1−1e
−λ

(
b1+

∑n
i=1

(
e
x
β
i −1
))
∝GA(n+ a1,

n∑
i=1

(
ex
β
i − 1

)
+ b1)

and

fB(β|λ,x)∝ βn+a2−1eβ
(∑n

i=1 log(xi)−b2
)
+
∑n
i=1 x

β
i +λ

∑n
i=1

(
1−ex

β
i

)
.
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As in the fiducial process, we can easily generate samples of λ from the gamma density and

Metropolis-Hasting with normal proposal is needed distribution for β. Thus, the point estimates

of the parameters, λ̂B and β̂B, can be obtained using the Gibbs sampling algorithm which was

described in the fiducial process. Finally, the highest posterior density (HPD) 100(1−γ)% credible

intervals for the Bayesian estimates proposed by Chen and Shao [3] can be constructed as

I λ̂B
∼=
(
λ̂B[ γ2 (M−B0)]

, λ̂B[(1− γ2 )(M−B0)]

)
and I β̂B

∼=
(
β̂B[ γ2 (M−B0)]

, β̂B[(1− γ2 )(M−B0)]

)

where [γ
2
(M −B0)] and [(1− γ

2
)(M −B0)] are the smallest integers less than or equal to γ

2
(M −B0)

and (1− γ
2
)(M −B0), respectively.

5. Simulation studies

In this section, we perform some simulation studies to evaluate the performances of the general-

ized fiducial (GFI), ML and Bayesian estimators for the shape parameters of the Chen distribution.

We consider three different combinations of the parameters (λ,β) as (1.25,1.25), (0.50,0.75) and

(2.00,1.00). Small, moderate and larger sample sizes are considered as 10, 25 and 50, respectively.

We run Markov chain with 3500 iteration, the first 500 values are discarded as Burn-in period then

every third observation are taken in thinning procedure to generate uncorrelated and independent

Markov chains. We replicate each chain 1000 times. The estimations are evaluated with their biases

and mean squared errors (MSE). Further, we provide 95% approximate confidence intervals of the

estimations and evaluated them according to their average lengths (AL) and coverage probabil-

ities (CP). In the Bayesian estimations, we use the small and non-negative hyper-parameters as

a1 = a2 = b1 = b2 = 0.0001 suggested by Congdon ([5], page 69) which are almost like Jeffrey’s priors

but they are proper, inversely. The biases and the MSEs of the estimates are reported in Table 1

and 2 then the corresponding credible intervals with their ALs and CPs are given in Table 3 and

4.

Table 1. The performances of estimations for β based on GFI, MLE and Bayesian methods

β̂ Bias MSE
λ β n GFI MLE BYS GFI MLE BYS

1.25 1.25 10 0.02782 0.23687 0.08564 0.15144 0.22183 0.17905
1.25 1.25 25 0.01232 0.09554 0.04193 0.05587 0.06492 0.05984
1.25 1.25 50 0.00273 0.04103 0.01636 0.02553 0.02742 0.02650
0.50 0.75 10 0.02556 0.11549 0.02966 0.03893 0.05390 0.04403
0.50 0.75 25 0.01128 0.04732 0.01714 0.01466 0.01632 0.01521
0.50 0.75 50 0.00267 0.02032 0.00608 0.00666 0.00702 0.00682
2.00 1.00 10 0.02283 0.18994 0.06587 0.10344 0.14840 0.11809
2.00 1.00 25 0.00790 0.07682 0.03285 0.03770 0.04354 0.03988
2.00 1.00 50 0.00290 0.03294 0.01268 0.01755 0.01881 0.01809
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Table 2. The performances of estimations for λ based on GFI, MLE and Bayesian methods

λ̂ Bias MSE
λ β n GFI MLE BYS GFI MLE BYS

1.25 1.25 10 0.16140 0.33639 0.23991 2.14111 2.36967 2.26649
1.25 1.25 25 0.05823 0.10341 0.07452 1.10221 1.14054 1.11397
1.25 1.25 50 0.01813 0.03750 0.02475 0.73433 0.74718 0.73594
0.50 0.75 10 0.06494 0.03236 0.05080 0.75997 0.74430 0.74981
0.50 0.75 25 0.02384 0.00724 0.01654 0.45178 0.44779 0.44844
0.50 0.75 50 0.00997 0.00145 0.00619 0.31458 0.31361 0.31244
2.00 1.00 10 0.39813 0.85419 0.64314 4.67404 5.32950 5.25041
2.00 1.00 25 0.13142 0.25914 0.18812 2.16615 2.27428 2.21826
2.00 1.00 50 0.04035 0.09662 0.06515 1.38913 1.42470 1.39976

Table 3. The performances of aproximate confidence intervals for β based on GFI, MLE and Bayesian methods

β̂ AL CP
λ β n GFI MLE BYS GFI MLE BYS

1.25 1.25 10 1.54294 1.62707 1.59565 94.60 96.30 95.20
1.25 1.25 25 0.90351 0.91553 0.90552 95.30 95.20 95.40
1.25 1.25 50 0.60660 0.61492 0.60934 93.70 94.40 94.00
0.50 0.75 10 0.79377 0.80036 0.79757 94.70 93.70 95.50
0.50 0.75 25 0.45399 0.45716 0.45258 95.10 94.10 95.10
0.50 0.75 50 0.30712 0.30958 0.30627 93.20 93.90 93.40
2.00 1.00 10 1.25740 1.33258 1.29795 94.50 95.90 96.00
2.00 1.00 25 0.74608 0.75799 0.74957 95.50 95.60 95.70
2.00 1.00 50 0.50429 0.51124 0.50675 93.40 94.20 93.80

Table 4. The performances of aproximate confidence intervals for λ based on GFI, MLE and Bayesian methods

λ̂ AL CP
λ β n GFI MLE BYS GFI MLE BYS

1.25 1.25 10 2.14111 2.36967 2.26649 96.90 95.90 95.60
1.25 1.25 25 1.10221 1.14054 1.11397 96.20 96.20 95.50
1.25 1.25 50 0.73433 0.74718 0.73594 95.10 95.30 94.60
0.50 0.75 10 0.75997 0.74430 0.74981 96.30 92.10 95.20
0.50 0.75 25 0.45178 0.44779 0.44844 94.80 94.00 94.30
0.50 0.75 50 0.31458 0.31361 0.31244 94.90 94.00 95.50
2.00 1.00 10 4.67404 5.32950 5.25041 95.70 96.40 95.60
2.00 1.00 25 2.16615 2.27428 2.21826 95.80 97.50 95.60
2.00 1.00 50 1.38913 1.42470 1.39976 95.00 96.80 95.10

We observe satisfying consistency in the performances of the estimators. The biases, MSEs and
the ALs of the confidence intervals decrease parallel to increasing sample sizes in all sets of the
parameters. In whole cases, the GFI estimates have smaller biases, MSEs and ALs even in the
small samples that are powerful side of the Bayesian estimation method. The differences between
the performances of the proposed estimators are decreasing with the increasing sample sizes. In
the whole case, the CPs are pretty close to their actual value 0.95. Many various values of the
parameters are performed but only a few of them are reported here.
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6. Numerical example
In this section, a real-life data is illustrated to compare different estimation procedures studied

in this study. The data set which is given by Hand et al. [9] is handled. This data represents the
survival period of 45 patients treated with chemotherapy. This data set is also fitted for the Chen
distribution by Kayal et al. [13]. The data is given below as

1 63 105 129 182 216 250 262 301 301 342 354 356 358 380 383 383
388 394 408 460 489 499 523 524 535 562 569 675 676 748 778 786

797 955 968 1000 1245 1271 1420 1551 1694 2363 2754 2950

We divided data points by 3000 to simplify computations. Then, we fit this dataset with the
Chen distribution by using the MLE, GFI and Bayesian inference methods.

We also evaluate the convergence of the Markov chains. We perform Markov chains 100 500
times and we discard the first 500 values as burn-in period and we count in every tenth variate
as independent and uncorrelated samples. Thus, we obtain 10 000 uncorrelated and independent
samples. In the Bayesian procedure, we use very small non-negative values of the hyper-parameters,
i.e. a1 = a2 = b1 = b2 = 0.0001, as suggested by Congdon ([5], page 69) which are almost like Jeffrey’s
priors but they are proper, inversely.

The parameter estimates of the parameters and their corresponding confidence intervals are
obtained as given in Tables 5-6, respectively.

Table 5. Estimations, K-S test values and p- values for the real data example

MLE GFI Bayes
λ 3.1979 3.0759 3.1290
β 0.9804 0.9444 0.9571

K-S 0.1778 (0.4756) 0.1556 (0.6476) 0.2222 (0.2165)

Table 6. Confidence intervals with their lengths for the real data example

ACI FCI BCI

λ
(1.9157,4.4803) (1.9810,4.4835) (1.9921, 4.5752)

2.5646 2.5025 2.5831

β
(0.7348,1.2261) (0.7108,1.2014) (0.7212,1.2079)

0.4914 0.4906 0.4867

The Kolmogorov–Smirnov (KS) test statistics and the associated p-values for all inference pro-
cedures are obtained as bigger than 0.05. Therefore, we can not reject the null hypothesis that this
data set comes from the Chen distribution. Also, the estimated density and the emprical cdf plots
support this observation as seen in Figure 3.

Further, the convergence of the Markov chains is evaluated with trace (Figures 4-5), density
(Figures 6-7) and running mean (ergodic average) ( Figures 8-9) plots. A trace plot is a plot of
the parameter values in each iteration of the Markov chain against the iteration number. It is
expected to observe that the Markov chain disperses around its center with a similar variation.
In our example, trace plots of the Markov chains provide expectations and fluctuate around their
centers with similar variations. Further, the posterior density plots of λ and β via GFI and Bayesian
methods obtained almost symmetrical and in the shapes of unimodal. The trace, density and
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Figure 3. Estimated density and empirical cdf for real-data example fitted by the Chen distribution

running mean plots can be drawn using by the traplot, denplot and rmeanplot functions in
library mcmcplots (Curtis et al., [7]) in R [6] software.
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Figure 4. Trace plots for λ via GFI (on left) and the Bayesian (on right) methods
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Figure 5. Trace plots for β via GFI (on left) and the Bayesian (on right) methods
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Figure 6. Density plot for the posterior distribution of λ via GFI (on left) and the Bayesian (on right) methods
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Figure 7. Density plot for the posterior distribution of β via GFI (on left) and the Bayesian (on right) methods
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Figure 8. Running mean plot for λ via GFI (on left) and the Bayesian (on right) methods
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Figure 9. Running mean plot for β via GFI (on left) and the Bayesian (on right) methods

7. Conclusions
On the basis of this study, the generalized fiducial inference is considered for the parameter

estimates of the Chen distribution. Further, the MLE and Bayesian procedures are handled as
alternative methods to this inference method. The performances of the simulation schemes show
that the GFI method has superiority in parameter estimations of the Chan distribution over the
classical and Bayesian estimation methods. The GFI method provides better results than MLE
and Bayesian methods in most cases even in the case of small, moderate or large sample sizes. The
theoretical findings are also evaluated on a real data example. Additionally, the convergence of the
Markov chains generated in the GFI and Bayesian procedures are provided. These observations
are supported by the graphical methods. Consequently, the generalized fiducial inference method
based on the inverse of the structural equation which is proposed by Hannig et. al. [12] should be
proposed as a more efficient estimator for the parameter estimation of the Chen distribution.
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