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Öz

Kumar oynama bozukluğu, seks bağımlılığı, dijital oyun bağımlılığı, egzersiz bağımlılığı, internet bağımlılığı, yeme bağımlılığı, alışveriş bağımlılığı 
ve iş bağımlılığı gibi davranışsal bağımlılıklar, işlevsellikte bozulma, tolerans ve çekilme, eşlik eden hastalıklar, nöronal yolaklar ve genetik arka 
plan dahil olmak üzere birçok noktada madde bağımlılıklarına benzemektedir. Bu alandaki nörobiyolojik araştırmalar henüz yeni olmakla birlikte, 
davranışsal bağımlılıklar biyokimyasal, radyolojik ve genetik özellikler açısından ele alındığında, madde kullanım bozuklukları ile güçlü nörobiyolojik 
ilişkiler ortaya çıkarmıştır. Literatürdeki çalışmaların çoğu kumar bağımlılığı ve internet bağımlılığı üzerine odaklanmış ancak diğer davranışsal 
bağımlılıkların da farklılıklarının yanı sıra benzer bazı yapısal değişikliklere de sahip oldukları gösterilmiştir. Davranışsal bağımlılıkları genetik ve 
nörobiyolojik yönleriyle tanımak ve anlamak, bu bozukluklara ilişkin farkındalığı artırmak, süreci daha iyi ele almak, önleme ve tedavi stratejileri 
geliştirmek açısından önemlidir. Bu yazıda, klinisyenler ve araştırmacılar tarafından son yıllarda daha fazla ilgi görmeye başlayan davranışsal 
bağımlılıkların nörobiyolojik ve genetik özellikleri ve ilişkili nörobiyolojik yolaklara ilişkin verileri gözden geçirmeyi amaçladık.

Anahtar kelimeler: Kumar oynama bozukluğu, internet bağımlılığı, yeme bağımlılığı, seks bağımlılığı, egzersiz bağımlılığı, kompulsif satın alma

Abstract

Among behavioral addictions gambling disorder, sex, digital game, exercise, food, shopping and work addictions are similar to substance addictions 
at many points, including disruption in functionality, tolerance and withdrawal, comorbid diseases, genetic background and neuronal mechanisms. 
While neurobiological studies of behavioral addictions are very recent, research on biochemical, radiologic, genetic and treatment related features of 
behavioral addictions have revealed strong neurobiological associations with alcohol and substance addictions. Most of the studies in the literature 
focused on gambling addiction and internet addiction, but it is shown that beside their differences, there is also similar neurobiological and 
structural alterations exist in other behavioral addictions. It is important to recognize and understand behavioral addictions with their genetic and 
neurobiological aspects, to increase awareness of these disorders, to handle the process better and to develop prevention and treatment strategies. 
In this article, we reviewed data on the neurobiological and genetic manifestations and associated neurobiological pathways of behavioral addictions 
that are beginning to gain more attention from clinicians and researchers.
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Introduction

Addiction is defined as a “habitual impulse” to engage in a 
specific activity or drug abuse, which has undesirable results 
on an individual’s psychologic and physical health, social and 
financial status (1). The concept of behavioral addiction, on the 
other hand, includes an uncontrollable desire to exhibit a certain 
behavior and repeated pleasurable behavioral patterns, although 

it harms the individual’s life (2,3). Behavioral addictions such as 
gambling disorder (GD), sex, digital game, exercise, internet, food, 
work and shopping addictions (compulsive buying) have become 
important public health problems. Among these disorders, 
only GD is classified in DSM -5, but other behavioral addictions  
have started to be encountered frequently in the psychiatric 
practice (4). 
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Addictive drugs that are rewarding in nature reinforce dopamine 
(DA) system in the brain and increase DA release in the nucleus 
accumbens (NAc) which is an important part of reward 
neurocircuits along with the extended amygdala, hippocampus, 
ventral tegmental area (VTA), ventral striatum, mesolimbic 
dopaminergic pathway, and prefrontal cortex (5,6). DA is 
the most important neurotransmitter of this reward system. 
According to the reward deficiency hypothesis individuals who 
do not acquire enough satiety with natural rewards (water, food, 
sexuality) gravitate towards substances and behaviors to activate 
the reward pathway. DA receptor insufficiency creates a marked 
predisposition to impulsive and compulsive behaviors, alcohol 
and substance addiction, pathological gambling and addictive 
behaviors. Also, increased sensitivity to rewarding and reward 
seeking behaviors occurs. For example; internet use mimics 
the stimulation caused by alcohol and other substances with 
becoming a rapid reward with a short delay and providing more 
reward seeking and behavioral motivation (7). 

Although neurobiological studies of behavioral addictions are 
relatively more recent than substance addiction researches, 
strong neurobiological associations has been demonstrated  
by biochemical, radioimaging, genetic and treatment studies 
between these disorders (8). Compulsive repetition of a 
problematic behavior, an appetizing impulse or urge before 
engaging in this act, diminished self-control, and a hedonic 
feature during the behavior are common key clinical features of 
behavioral and substance addictions (9). In addition, substance 
use disorders may often coexist with behavioral addictions. 
Comorbidity rates of gambling disorder with nicotine addiction 
have been reported as 70%, with alcohol addiction as 50-75% 
and with other substances this rate approaches 40% (10-13). In 
this review, we aimed to address the neurobiological and genetic 
aspects of behavioral addictions.

Gambling Disorder

Gambling disorder (GD) can be described as insistent, repetitive 
and uncontrolled gambling in a way that impairs psychosocial 
functionality (4). While the pathophysiology of GD has not been 
completely understood, there is broad concurrence that several 
phenotypes are involved such as; increased impulsivity, risky 
decision making, sensory seeking, compulsivity and reward 
sensitivity and also cognitive distortions (14,15).  

Neurotransmitters

Stimulation of the DA transmission by drugs is a core feature 
of the reward system (16). While DA seems to be important in 
learning, motivation, emphasis and reward and lost processes, 
its role in GD continues to be investigated (17,18). Recent data 
assert that the differentiation of stimuli from D2, D3 and D4 
receptors may explain the role of DA in the pathophysiology of  

GD (19,20). 5-HT metabolite levels (5-hydroxindolacetic acid (5-
HIAA)) in cerebrospinal fluid was found to be decreased in GD, 
and dysregulation in serotonergic functions in gamblers may 
be associated with impulsivity and inhibition of behavior (21-
23). The decrease in platelet monoamine oxidase (MAO) activity, 
which is an indicator of biological susceptibility for impulsivity, 
is another evidence for serotonergic dysfunction in GD (24-26), 
Serotonin 1B receptor is also related with GD severity (27,28).  

Neuroimaging

Neuroimaging studies have shown dysfunctionalities in different 
areas of the brain in GD, although they focus especially on 
frontal and striatal zones (29-31). Among GDs both an increase 
and a decrease in ventromedial prefrontal cortex (vmPFC) activity 
have been reported during gambling and decision-making tasks 
compared to control group (32-36). Deterioration in frontal lobe 
function has been reported in patients with GD, and gambling 
behavior can be seen in patients with bilateral vmPFC lesions. 
(37, 38). Steady diversions in key node in neural circuit, including 
striatum, medial prefrontal cortex, amygdala, and insula have 
observed shown by functional magnetic resonance imaging 
(fMRI) during reward processing and decision-making tasks 
in patients with GD. Nevertheless, several studies have shown 
hypoactivity of this system while others have shown hyperactivity 
(32,39-41).  

Genetics

In twin studies, it has been shown that genetic factors contribute 
more than environmental factors in the development of GD, 
and the prevalence of GD in first-degree relatives of individuals 
with GD was found to be 20% (42-45). These studies also revealed 
common genetic risk factors for GD and alcohol abuse (46). 

An increase in A1 allele at the D2  receptor of DA (DRD2) locus 
was found in gamblers (47). Genetic polymorphisms related 
to DA transmission was shown to be related with irregular 
gambling (48, 49). Other studies highlights allelic variants such 
as; 5HTTLPR and MAO-A in 5-HT transmission genes in GD 
(50,51). Also, polymorphisms in several genes, including DRD3, 
DRD4, HTR2A, and COMT have been shown in patients with GD 
(25,50,52-55). 

Internet Addiction

Internet addiction is defined as having difficulty to control the 
use of the internet, spending more time on the internet, the 
loss of importance of time spent without using the internet, 
the emergence of excessive irritability, tension, anxiety when 
couldn’t access internet and deterioration in the individual’s 
work, social and family life (56). 

Neurotransmitters

In internet addiction disorder (IAD) autonomic nervous system 



235

Bağımlılık Dergisi 2022;23(2):233-241

(ANS) is activated, heart rate and breathing accelerate and 
peripheral temperature decreases (57). Serum cortisol levels 
were found to be considerably high in adolescents with IAD (58). 
A decrease in plasma catecholamine levels such as; adrenaline 
and noradrenaline can be seen in adolescents with online game 
addiction at resting state (59). The peripheral blood DA levels 
are related to IAD in adolescents. (60). Increased anxiety and 
low peripheral blood norepinephrine levels was found to be 
associated with IAD (61).  

Neuroimaging

Many imaging studies have shown some important changes in 
neural structure in IAD, mainly reduction in gray matter volume 
and changes in white-matter density (62). IAD was also found to 
be associated with thickening of the left anterior central cortex, 
middle frontal cortex, middle temporal cortex, infratemporal 
cortex, as well as slimming of the left lateral orbitofrontal cortex, 
insular cortex and entorhinal cortex (63,64).  Strengthening 
functional connections between the bilateral posterior lobes 
of the cerebellum and the middle temporal gyrus, but also, 
weakening of the connections between the bilateral lower 
parietal lobes and the right lower temporal gyrus have been 
reported (65). 

Glucose metabolism decreases in the prefrontal and temporal 
cortexes and limbic systems, and also dysregulation of D2 
receptors in the striatum have been observed in digital gamers 
as a result of overuse for many years (66). Money making 
activates orbitofrontal cortex and losses decrease the activation 
of cingulate cortex in internet addicts (67).  

In a PET study by Kim et al., researchers have shown a decrease 
in DA D2 receptor levels in the caudate nucleus and putamen 
regions, in adult males with internet addiction (68). Likewise, 
reduced dopamine transporter levels in the striatum have been 
demonstrated in a single photon emission computed tomography 
(SPECT) study in internet addicts (69). In fMRI studies, activation 
of right prefrontal cortex, right NAc, medial frontal cortex and 
right caudate nucleus was observed while showing game pictures 
and paired images to individuals with internet gaming addiction 
(70-73). Resting state cerebral perfusion in parahippocampal 
gyrus, amygdala and insula is also found substantially high (74). 

In conclusion, structural and functional alterations mainly in 
the orbitofrontal cortex, dorsolateral prefrontal cortex, anterior 
cingulate cortex, and posterior cingulate cortex were observed 
IAD (75). These brain regions are especially associated with 
reward, motivation, memory, and cognitive control. 

Genetics

There are a few studies on the genetics of IAD. It has been shown 
that the genetic transition of internet addiction is around 48-
66% when unshared environmental factors are excluded (76). 

In a Korean study, excessive internet users was found to have 
a higher frequency of  homozygous short allelic variant of the 
5-HT transporter gene as in patients with major depression 
and also genetic and personality traits were found similar (77). 
Polymorphism in the nicotinic acetylcholine receptor gene is 
significantly frequent in internet addicts (78).

Food Addiction

Food addiction (FA) is defined as the frequent and abnormal 
consumption of some “extremely tasty” foods rich in high calories 
and glucose and the difficulty of controlling eating behavior 
(79). Repeated binge eating periods, increased binge eating 
after relative restriction of eating, loss of control overeating, 
consuming high-calorie foods, negative affect, and emotional 
lability are recommended criteria for FA, although there is no 
consensus (80). 

Neurotransmitters

Natural rewarding stimuli such as water and food are also 
associated with significant synaptic changes in the mesolimbic DA 
system, as similar with the rewarding effects of psychostimulants 
and other abusive drugs (81,82). Recent evidence suggests that 
compulsive eating behaviors and obesity influence the brain’s 
reward circuit, particularly circuits of dopaminergic neural 
substrates as in substance use disorder. Increasing genetic and 
imaging data on addiction has indicated that obese individuals 
and substance addicts can show alterations in expression of DA 
D2 receptors in certain brain regions which can be stimulated by 
food and drugs (83).  

In a study showing that striatal DA D2 receptors were significantly 
low in obese individuals compared to healthy controls, and body 
mass index (BMI) and D2 receptors were negatively correlated, it 
has been suggested that obese individuals continue pathological 
eating to compensate for DA deficiency and decrease in activation 
of motivation and reward circuits (84). 

In obese mice down-regulation of striatal DA D2 receptors has 
been found similar to individuals with substance use disorder. 
Moreover, in rats with access to delicious high-fat foods, lentivirus-
mediated destruction of striatal DA D2 receptors was found to 
accelerate compulsive foraging and the development of reward 
deficits as in addiction disorders. These data assert that excessive 
consumption of tasty food triggers neuroadaptive reactions as 
in addiction and compulsive eating, FA and substance addiction 
may share common hedonic mechanisms (85).

Neuroimaging

The ventromedial prefrontal cortex, ventral striatum, amygdala, 
anterior insula, and mediodorsal thalamus are responsible for 
monetary, sexual and eating habits (86). Hippocampus which 
is found to be associated with obesity is stimulated by craving, 
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hunger, and tasting (87,88). Reduced DA D2 receptor activity  in 
ventral striatum have identified in PET studies and also food 
addiction is found to be partially associated wih ventral striatum 
activity (5) (89). 

Genetics

Reduced DA D2 receptor density have been found  in individuals 
with A1 allele as in addiction disorders and obesity and a 
relatively high degree of reward sensitivity has been detected 
in obese patients carrying the A1 allele (90). In a study showing 
multilocus polymorphism of the DA D2 receptor gene and the 
mu-opioid receptor (OPRM1) gene, it was emphasized that 
individuals with binge eating disorder had higher scores in 
hedonic eating scales, and binge eating disorder is a biologically 
based obesity subtype (91). 

Sex Addiction/Compulsive Sexual Behaviour

Sexual addiction (SA), that is also named as sexual impulsivity 
or hypersexuality, is expressed by abnormal sexual desire, 
urge or behaviors and having difficulty to control these drives 
and behaviors. (92,93). The major symptoms are compulsive 
masturbation, excessive use of pornography or sexual webcam, 
repetitive seeking behavior of different sexual partner, and/or 
compulsive sex with a constant partner (94,95).

Although there is no consensus on the conceptualization of 
SA, extensive criteria used to identify the disorder includes (a) 
increased time and effort devoted to sexual activity; (b) destruction 
of self-control; (c) spending less time on responsibilities; and (d) 
persistence in these sexual acts despite the negative outcomes. 
Tolerance, withdrawal and craving are common symptoms for 
SA and other addiction disorders (96,97).

Neurotrasmitters

Preliminary results show that dopamine might contribute to the 
pathogenesis of compulsive sexual behavior (CSB). Dopamine 
agonists and other DA replacement therapies that used in 
Parkinson’s disease (PD), increase the risk of having CSB (98).  
Naltrexone  as an opioid antagonist has been found to be effective 
in alleviating excessive sexual impulses and behaviors, which is 
consistent with potential opioidergic alterations of mesolimbic 
DA function (99). Results of a study in which citalopram was 
superior to placebo in the treatment of CSB in homosexual men 
supports serotonergic dysfunction in CSB (91). 

Neuroimaging

In a diffusion tension imaging study mean diffusivity of superior 
frontal region was found considerably high in patients with CSB 
compared to controls (100). Activation of the dorsal anterior 
cingulate, amygdala, and also ventral striatum have shown 
by fMRI in CSB patients by sexual stimuli (101). Exposure to 

pornographic cues has been found to increase the sexual 
desire in PD patients with hypersexuality, and activate the 
ventral striatum, cingulate cortex and orbitofrontal cortex (102). 
Increased time spent watching pornography among healthy 
men has been associated with left putaminal activity (103).

Subjects with CSB have shown higher amplitudes of the P300 
response in attention control when subjected to sexual images 
compared to neutral images. (104). In a study evaluating 
responses to sexually stimuli, sexual desire was found to be 
associated with dorsal anterior cingulate activity, and substantia 
nigra activity increased in patients with CSB as a result of 
dopaminergic activity (101).

While erotic rewards and food have been associated with the 
anterior insular activity, amygdala activity was found to be more 
specifically related to erotic rewards. A recent study showed that 
the longer consumption of pornography was associated with left 
putaminal activity in healthy men (103). When hypersexuality 
is observed in behavioral variant frontotemporal dementia, the 
right ventral putamen and pallidum atrophy can be seen in 
correlation with reward seeking scores (105).  In addition, in a 
case report of CSB, a partial increase in blood flow in the mesial 
temporal regions was observed on SPECT images (106). 

Genetics

Limited evidence suggests that the majority of subjects with CSB 
had first-degree relatives with CSB or substance use disorder 
(107). It has been found that DA D2 receptor allele was found 
to be associated with first sexual intercourse age, and a stronger 
relationship observed when the DA D2 receptor interacted with 
the DA D1 receptor. (108). Specifically, across all ethnicities, 
polymorphism analyzes in DA D4 receptor  have shown that 
age of first sexual intercourse  is higher in those with any - 3R 
genotype than any other (109). Human leukocyte antigen (HLA) 
alleles were analyzed in Klein level syndrome, which is often 
accompanied by hypersexuality, and a significant amount of 
immunoresponsive HLA-DQB1, DQB1 * 0602, was detected (110). 

Compulsive Buying/Shopping Addiction

People often turn to compulsive purchases in order to cope with 
daily stresses and create a positive impact. Compulsive buying or 
shopping addiction is described as the repetitive and excessive 
purchase of unnecessary consumer products. Compulsive buyers 
often describe short-term satisfaction and mood alterations. But 
this behavior can often causes large debts, negative comments 
from social environment, guilt and psychological stress, resulting 
in negative effects on self-esteem and comfort of life (111,112). 

Neurotransmitters

There is an imbalance between overstimulated urge state and 
deterioration of frontal inhibition, and impairment in reward 
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system. An exaggerated state of craving and urge is observed 
due to changes in DA systems which is related with reward 
and reinforcement. Endogenous opioids lead to alterations 
in impulse control through working on reward, pleasure, and 
pain. There is also a decrease in peripheral 5-HT markers due 
to insufficiency of  5-HT system, that results in disinhibition (8).

Addiction-like behaviors such as hoarding or compulsive buying 
may be associated with high stress levels and the cumulative 
effects of neurotransmitters genetic variants, particularly DA. 
Therefore, when outcomes of dopaminergic activation are 
unsatisfaying with agonist therapy, DA homeostasis can be 
targetted in treating these undesirable behaviors (113). Some 
reports suggest that hyperdopaminergic states are observed 
in impulsive hoarding behavior, such as shopping addiction, 
and the blockage of D2 receptors may improve the condition 
(114). In a study by Kelley and Stinus, it was shown that when 
6-hydroxydopamine lesions were seen in mesolimbic DA 
neurons, the hoarding behavior disappeared in rats, and was 
restored when L-Dopa was administered (115). In compulsive 
shopping neurotransmitter activity was found to be low and 
positive results were obtained with citalopram treatment. 
These results suggested possible serotonergic dysfunction in 
compulsive shopping (116,117).

Neuroimaging

Remarkable differences were found in fMRI in the activity 
of cortical and subcortical areas related to decision-making 
between compulsive buyers and the healthy controls (118).  
Evidence from neuroimaging studies shows that gain and loss 
are determined by different brain circuits; while the insula is 
activated by high prices before the decision of purchase, the 
mesial prefrontal cortex is deactivated, and product preference 
is related with the NAc (119). 

Several different cognitive domains were shown to support 
a possible neurobiological overlap between other behavioral 
and substance addictions to shopping addiction. Compared to 
healthy controls, individuals with compulsive buying appear 
to have deterioration in spatial working memory, response 
inhibition and risk assessment during decision-making (120).
In a case report with substance use disorder, the addition of 
a pro-dopamine compound KB200z to the treatment regimen 
significantly reduced stacking and shopping behaviors (113).

Genetics

There is not much data in the literature regarding the genetic 
basis of compulsive buying. The psychiatric disease comorbidity 
is high in compulsive buyers and their first degree relatives than 
healthy controls (121). In a study consist of 21 patients diagnosed 
with compulsive buying, deletion of 44-base pair (bp) was found 
in the promoter region of 5-HT transporter gene (122).

Exercise Addiction/Compulsive Exercise

Exercise addiction is defined as having difficulty in controlling 
exercise habits, spending more time for exercising and 
increasing frequency and intensity of exercise, inability to 
fulfill responsibilities due to exercise and exercising instead of 
spending time with family and friends and having troubles in 
planning the social life, other interests due to daily exercise 
routine (123,124).

Neurotransmitters

Dopamine release increases in the hypothalamus with 
continuous aerobic exercise and in the dorsal striatum with 
running, and exercise also increases norepinephrine in the 
hypothalamus (125,126). It is known that endogenous opioid 
system is one of the key factors in addictive disorders. Desire 
to increase β-endorphin levels through excessive exercise might 
be a potential mechanism leading to exercise addiction (127). 
Human and animal tests have pointed that aerobic exercise 
can improve many aspects of cognition and performance 
(128). It has been claimed that physical activity improves 
brain functions and cognition, and thus have protective 
effects against the neurodegenerative diseases (129). Physical 
activity has constructive effects on learning and memory by 
increasing advanced adult hippocampal neurogenesis and 
synaptic plasticity (130). It was shown that the effect of voluntary 
exercise reduced the exploratory and aggressive behavior in the 
spontaneously hypertensive rats and a sudden break on exercise 
leads to withdrawal reaction (131). The frequently mentioned 
molecular mechanism underlying structural and functional 
recovery of the brain in exercising animals is stimulation of 
hippocampal neurogenesis and BDNF expression (132,133). In 
addition, a dramatic increase in cell proliferation and cognitive 
functions has been detected (134,135). Another study assert 
that glutamatergic system modulates hippocampal volume 
and function through physical activity, but the mechanisms 
underlying this condition have not been clearly identified (136).

Neuroimaging

Running was shown to mediate the expression of ionotropic 
glutamate receptors in the subdivisions of rat hippocampus and 
it was considered to alter synaptic activity of hippocampus and 
thus have behavioral consequences (137). The exercising rats 
had 18% lower DA D1 receptor binding levels in the olfactory 
tubercle and 21% lower in the nucleus accumulators, compared 
to sedentary rats. In line with these findings, it can be claimed 
that aerobic exercise may cause alterations in the mesolimbic 
pathway and so drug-seeking behavior will decrease (138). Apart 
from these studies, cell proliferation in the hippocampus, which 
was low in ‘depressed’ rats, increased after 5 weeks of running. 
Therefore, it has been stated that repression of cell proliferation 
in the hippocampus may predispose to depression and exercise 
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can be an effective in treatment (139).

Genetics 

It has been suggested that some rodents with a predisposition 
to addictive drugs may show different preferences in running 
wheel exercise in crossbreds (140). It was observed that Lewis 
rats prone to addiction, developed a higher running activity than 
Fischer rats when given free access to running wheels, and were 
able to run up to 10 km / day after two weeks (141). Genetic 
studies suggest that naturally rewarding stimuli such as exercise 
are also controlled by genes that control drug preference, and 
moreover, considering the antidepressant efficacy of running, 
genes are assumed to be responsible for the neurochemical 
effects of running. (142).

Conclusion

Neurobiological similarities between substance addiction 
and behavioral addictions are well known. In this paper, we 
reviewed both the structural and biological changes in the 
brain and genetic studies with current studies in behavioral 
addictions. The effects of 5-HT, DA, NA and opioid systems and 
especially the reward system is emphasized on pathophysiology 
of behavioral addictions in literature. Similar to substance 
addiction, cortical and subcortical areas such as prefrontal 
cortex, nucleus accumbens, ventral tegmental area, amygdala, 
and hippocampus are also affected in behavioral addictions. 
In addition, genetic studies show that behavioral addictions 
are associated with some similar gene regions, although there 
are not many. Although only pathological gambling is included 
in the DSM-5 among behavioral addictions, we think that 
understanding the neurobiology of behavioral addictions will be 
important to develop prevention and treatment strategies.
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