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Abstract. In this paper, an optimal inequality involving the delta curvature

is exposed. With the help of this inequality some characterizations about the
vertical motion and the horizontal divergence are obtained.

1. Introduction

The celebrated divergence theorem states that divergence of a vector field indi-
cates how much the vector spreads out from the certain point. In fluid kinematics,
if a vector field X is considered as velocity of a fluid or a gas, then sign of div(X)
describes the expansion or compression of flow. Therefore, the total expansion or
compression of flow can be calculated by the help of divergence theorem so diver-
gence is a useful tool to measuring the net flow of fluid diverging from a point or
approaching a point. The first phenomenon is called as horizontal divergence and
the other is called as horizontal convergence.

The continuity equation simple states that any matter can either be created or
destroyed and implies for the atmosphere that its mass may be redistributed but
can never be disappeared. Therefore, this equation gives us that

div(U) = 0 (1)

for any vector field U = (u1, u2, u3) on E3. It can be written from (1) that

divH(U) +
∂u3

∂z
= 0, (2)
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where divH(U) is the horizontal divergence of U defined by

divH(U) =
∂u1

∂x
+

∂u2

∂y
. (3)

The equation given (2) is also known as the continuity equation in literature. Inte-
grating (2), we have

ω(p1, p0) ≡ u3(p1)− u3(p0) = −
∫ p1

p0

(
∂u1

∂x
+

∂u2

∂y
)dz, (4)

where p1 and p0 is some pressure levels on the atmosphere. If we assume that p0 is
the surface pressure then u3(p0) = 0 and thus we get

ω(p1) = −
∫ p1

p0

(
∂u1

∂x
+

∂u2

∂y
)dz. (5)

This formula tells us that w at a given pressure level is proportional to the integral
of the horizontal divergence. Here, ω(p1) is called the vertical motion at p1. If
ω(p) < 0 at every point p then this statement is called rising motion, ω(p) > 0
at every point p then this statement is called descending motion, (in this case,
divergence is called convergence) in meteorology. There is no divergence and it is
clear that there is a local maximum or minimum of w.

Beside these facts , B.-Y. Chen [7] initially introduced a new invariant the so-
called delta curvature δ for an n-dimensional Riemannian manifold M by

δk(p) = τ(p)− (infτ (Πk)) (p) , (6)

where 2 ≤ k ≤ n− 1, τ(p) is the scalar curvature at p ∈ M and

(infτ (Πk)) (p) = inf{τ(Πk) |Πk is a k-plane section ⊂ TpM}.
Furthermore, he gave a relation involving the delta curvature, the main intrinsic
and extrinsic invariants of submanifolds in a real space form (cf. Lemma 3.2 in [7]).
Then, this curvature drew attention of many authors and the notion of discovering
simple basic relationships between intrinsic and extrinsic invariants of a submanifold
becomes one of the most fundamental problems in submanifold theory (cf. [1, 3, 8,
10, 11, 19, 23, 24], etc.). Furthermore, various inequalities and their applications on
Riemannian submersions were studied recently in [4, 12,15,22].

Apart from isometric immersions and submanifolds theory, Riemannian sub-
mersions have played a substantial role in differential geometry since this frame
of maps also makes possible to compare geometrical properties between smooth
manifolds. Besides the mathematical significance, Riemannian submersions have
important physical and engineering aspects. There exist very nice applications
of these mappings in the Kaluza-Klein theory [13, 16, 25], in the statical machine
learning process [26], in the medical imaging [18], in the statical analysis [6], in the
robotic theory [2, 20,21].

Motivated by these facts, we firstly establish an optimal inequality involving the
delta curvature for Riemannian manifolds admitting a Riemannian submersion.
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Then, we investigate this inequality for some special cases. Finally, we obtain some
results dealing the vertical motion and horizontal divergence.

2. Preliminaries

Let (M, g) be and n dimensional Riemannian manifold with Riemannian metric
g. The sectional curvature, denoted KM (ei ∧ ej), of the plane section spanned by
orthogonal unit vectors ei and ej at p ∈ M is

K(ei ∧ ej) ≡ R (ei, ej , ej , ei) = R (ej , ei, ei, ej) , (7)

where R is the Riemann curvature tensor. Usually the sectional curvatureK(ei∧ej)
is denoted by Kij .

Let {e1, . . . , en} be any orthonormal basis for TpM . In particular, the Ricci
curvature Ric is defined by

Ric (X) =

n∑
j=1

K (X ∧ ej) . (8)

for each fixed ei, i ∈ {1, ..., n} we have

Ric(ei) =

n∑
j ̸=i

K(ei ∧ ej).

The scalar curvature τ (p) at p is defined by

τ (p) =
∑

1≤i<j≤n

K(ei ∧ ej). (9)

In particular, for a 2-dimensional Riemannian manifold, the scalar curvature is its
Gaussian curvature.

Let Πk be a k-plane section of TpM and X a unit vector in Πk. If k = n
then Πn = TpM ; and if k = 2 then Π2 is a plane section of TpM . We choose an
orthonormal basis {e1, . . . , ek} of Πk such that e1 = X. The k-Ricci curvature of
Πk at X, denoted RicΠk

(X), is defined by [9]

RicΠk
(X) = K(e1 ∧ e2) +K(e1 ∧ e3) + · · ·+K(e1 ∧ ek). (10)

Thus for each fixed ei, i ∈ {1, . . . , k} we get

RicΠk
(ei) =

k∑
j ̸=i

K(ei ∧ ej) =

k∑
j ̸=i

Kij . (11)

We note that an n-Ricci curvature RicTpM (ei) is the usual Ricci curvature of ei,
denoted Ric (ei). Thus for any orthonormal basis {e1, . . . , en} for TpM and for a
fixed i ∈ {1, . . . , n}, we have

RicTpM (ei) ≡ Ric (ei) =

n∑
j ̸=i

Kij .
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The scalar curvature τ (Πk) of the k-plane section Πk is given by

τ (Πk) =
∑

1≤i<j≤k

K(ei ∧ ej) =
∑

1≤i<j≤k

Kij , (12)

where {e1, ..., ek} is any orthonormal basis of the k-plane section Πk. We note that

τ (Πk) =
1

2

k∑
i=1

k∑
j ̸=i

K(ei ∧ ej) =
1

2

k∑
i=1

RicΠk
(ei). (13)

Given an orthonormal basis {e1, ..., en} for TpM , τ1···k will denote the scalar cur-
vature of the k-plane section spanned by e1, ..., ek.

The scalar curvature τ(p) of M at p is identical with the scalar curvature of the
tangent space TpM of M at p, that is,

τ (p) = τ (TpM) .

Let (M, g) and (B, g̃) be m and n dimensional Riemannian manifolds with Rie-
mannian metrics g and g̃, respectively. A smooth map π : (M, g) → (B, g̃) is called
a Riemannian submersion if

i) π has maximal rank.
ii) The differential π∗ preserves the lengths of horizontal vectors.

Now, let π : (M, g) → (B, g̃) be a Riemannian submersion. For any b ∈ B,
π−1(b) is closed r-dimensional submanifold of M . The submanifolds π−1(b) are
called fibers. A vector field tangent to fibers is called vertical and a vector field
orthogonal to fibers is called horizontal. If we put

Vp = kernel(π∗) (14)

at a point p ∈ M , then it can be obtained an integrable distribution V corresponding
to the foliation of M determined by the fibres of π. The distribution Vp is called
vertical space at p ∈ M .

Let H be a complementary distribution of V determined by the Riemannian
metric g. For any p ∈ M , the distribution Hp = (Vp)

⊥ is called horizontal space
on M [17]. Thus, we have the following orthogonal decomposition:

TM = V ⊕H. (15)

A vector field E on M is called basic if it is horizontal and π− related to a vector
field E∗ on B i.e., π∗Ep = E∗π(p) for all p ∈ M . Furthermore, it is known that if E
and F are the basic vector fields respectively π−related to E∗ and F∗, one has

g(E,F ) = g̃(E∗, F∗) ◦ π. (16)

Let h and v are the projections of Γ(TM) onto Γ(H) and Γ(V), respectively.
The fundamental tensor fields of π, denoted by A and T , are defined respectively
by

AEF = h∇hEvF + v∇hEhF, (17)
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TEF = h∇vEvF + v∇vEhF (18)

for any E,F ∈ Γ(TM), where ∇ is the Levi-Civita connection on M .
Now, let us define the following mappings:

TH : Γ(V)× Γ(V) → Γ(H),

(U, V ) → TH(U, V ) = h∇UV,

TV : Γ(V)× Γ(H) → Γ(V),
(U,X) → TV(U,X) = v∇UX,

and

AH : Γ(H)× Γ(V) → Γ(H),

(X,U) → AH(X,U) = h∇XU,

AV : Γ(H)× Γ(H) → Γ(V),
(X,Y ) → AV(X,Y ) = v∇XY,

Then, it is clear from (17) and (18) that TH is a symmetric operator on Γ(V)×Γ(V)
and AV is an anti-symmetric operator on Γ(H)× Γ(H). If (17) and (18) are taken
into account in (15), we can write

∇UV = TH(U, V ) + v∇UV, (19)

∇V X = h∇V X + TV(V,X), (20)

∇XU = AH(X,U) + v∇XU, (21)

∇XY = h∇XY +AV(X,Y ) (22)

for any U, V ∈ Γ(V) and X,Y ∈ Γ(H).
Let {U1, . . . , Ur, X1, . . . , Xn} be an orthonormal basis on TpM , where

V = Span{U1, . . . , Ur} and H = Span{X1, . . . , Xn}. The mean curvature vector
field ℏ(p) of any fibre is defined by

N (p) =
1

r

r∑
j=1

TH(Uj , Uj). (23)

Note that each fiber is a minimal submanifold of M if and only if ℏ(p) = 0 for all
p ∈ M . Furthermore, each fiber is called totally geodesic if both TH and TV vanish
identically and it is called totally umbilical if

TH(U, V ) = g (U, V ) ℏ

for all U, V ∈ Γ(V).
Now we recall the following Theorem [14]:

Theorem 1. Let π : (M, g) → (B, g̃) be a Riemann submersion. Then the hori-
zontal space H is an integrable distribution if and only if A vanishes identically.
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Remark 1. As a consequence of Theorem 1, we see that both AH and AV are
related to integrability of H, that is, they are identically zero if and only if H is
integrable.

Let R, R̃ and R̂ are the curvature tensors on M , B and be the collection of all
curvature tensors on fibers π−1(b) respectively, and Ř(X,Y )Z be the horizontal lift

of R̃π(b)(π∗pXb, π∗pYb)Zb at any point b ∈ M satisfying

π∗(Ř(X,Y )Z) = R̃(π∗X,π∗Y )π∗Z.

Then, there exist the following relations between these tensors:

R (U, V,W,G) = R̂ (U, V,W,G) + g
(
(TH(U,G), TH(V,W )

)
−g
(
TH(V,G), TH(U,W )

)
, (24)

R (X,Y, Z,H) = Ř(X,Y, Z,H)− 2g
(
AV(X,Y ), AV(Z,H)

)
+g
(
AV(Y,Z), AV(X,H)

)
− g

(
AV(X,Z), AV(Y,H)

)
, (25)

R (X,V, Y,W ) = g ((∇XT ) (V,W ) , Y ) + g ((∇V A) (X,Y ) ,W )

−g
(
TV(V,X), TV(W,Y )

)
+g
(
AH(X,V ), AH(Y,W )

)
, (26)

for any U, V,W,G ∈ Γ(V) andX,Y, Z,H ∈ Γ(H). Note that the above equalities are
known as Gauss–Codazzi equations for a Riemannian submersion. With the help
of Gauss–Codazzi equations, we get the following relations between the sectional
curvatures as follows:

K (U ∧ V ) = K̂ (U ∧ V )−
∥∥TH(U, V )

∥∥2
+g
(
TH(U,U), TH(V, V )

)
, (27)

K(X ∧ Y ) = Ǩ(X̌ ∧ Y̌ ) + 3∥AV(X,Y )∥2, (28)

K (X ∧ V ) = −g ((∇XT ) (V, V ) , X) +
∥∥TV(V,X)

∥∥2
−
∥∥AH(X,V )

∥∥2 , (29)

where K, K̂ and Ǩ denote the sectional curvatures in M , any fiber π−1(b) and the
horizontal distribution H, respectively. The scalar curvatures of the vertical and
horizontal spaces at a point p ∈ M are given respectively by

τ̂ (p) =
∑

1≤i<j≤r

K̂ (Ui, Uj) (30)

and

τ̌ (p) =
∑

1≤i<j≤n

Ǩ (Xi, Xj) . (31)

Now, we recall the following definition of [5].



CHEN INVARIANTS FOR RIEMANNIAN SUBMERSIONS 1013

Definition 1. Let π : (M, g) → (B, g̃) be a Riemann submersion and X be a
horizontal vector field on π. Then, horizontal divergence of X is defined by

divH(X) =

n∑
i=1

g(∇XiX,Xi). (32)

Lemma 1. [14] Let π : (M, g) → (B, g̃) be a Riemann submersion and
{U1, . . . , Ur} be any orthonormal basis of Γ(V). For any E ∈ Γ(TM) and X ∈
Γ(H), we have

g (∇EN , X) =
1

r

r∑
j=1

g ((∇ET ) (Uj , Uj) , X) . (33)

As a consequence of Lemma 1, we obtain that

divH(N ) =
1

r

n∑
i=1

r∑
j=1

g ((∇Xi
T ) (Uj , Uj) , Xi) . (34)

3. An Optimal Inequality for Riemannian Submersions

We begin this section with the following algebraic lemma:

Lemma 2. If n > k ≥ 2 and a1, . . . , an, a are real numbers such that(
n∑

i=1

ai

)2

= (n− k + 1)

(
n∑

i=1

a2i + a

)
, (35)

then
2

∑
1≤i<j≤k

aiaj ≥ a,

with equality holding if and only if

a1 + a2 + · · ·+ ak = ak+1 = · · · = an.

Proof. By the Cauchy-Schwartz inequality, we have(
n∑

i=1

ai

)2

≤(n−k+1)((a1+a2+· · ·+ak)
2+a2k+1+· · ·+a2n). (36)

From (35) and (36), we get
n∑

i=1

a2i + a ≤ (a1 + a2 + · · ·+ ak)
2
+ a2k+1 + · · ·+ a2n.

The above equation is equivalent to

2
∑

1≤i<j≤k

aiaj ≥ a.

The equality holds if and only if a1 + a2 + · · ·+ ak = ak+1 = · · · = an. □
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Let π : (M, g) → (B, g̃) be a Riemannian submersion between Riemannian
manifolds (M, g) and (B, g̃). Suppose {U1, . . . , Ur, X1, . . . , Xn} be an orthonormal
basis on TpM , where V = Span{U1, . . . , Ur} and H = Span{X1, . . . , Xn}. Then,
we have

∥TH∥2 =

r∑
i,j=1

g
(
TH(Ui, Uj), T

H(Ui, Uj)
)
, (37)

∥TV∥2 =

r∑
i=1

n∑
j=1

g
(
TV(Ui, Xj), T

V(Ui, Xj)
)
, (38)

∥AH∥2 =

r∑
i=1

n∑
j=1

g
(
AH(Xj , Ui), A

H(Xj , Ui)
)
, (39)

∥AV∥2 =

n∑
i,j=1

g
(
AV(Xi, Xj), A

V(Xi, Xj)
)
. (40)

Putting (27)− (29), (34) and (37)− (40) in

τ(p) =
∑

1≤i<j≤n

[K(Ui, Uj) +K(Xi, Uj) +K(Xi, Xj)],

we obtain the following lemma:

Lemma 3. Let (M, g) and (B, g̃) be a Riemannian manifolds admitting a Rie-
mannian submersion π : (M, g) → (B, g̃). For any point p ∈ M , we have

2τ (p) = 2τ̂ (p) + 2τ̌(p) + r2 ∥ℏ(p)∥2 −
∥∥TH∥∥2 + 3

∥∥AV∥∥2
−r divH(ℏ(p)) + ∥TV∥2 − ∥AH∥2. (41)

Now, we are going to give an optimal inequality involving the δ−curvature for
Riemannian manifolds admitting a Riemannian submersion.

Theorem 2. Let π : (M, g) → (B, g̃) be a Riemannian submersion. Then, for each
point p ∈ M and each k-plane section Lk ⊂ Vp (r > k ≥ 2), we have

δ(k) ≤ τ̂(p)− τ̂(Lk) + τ̌(p) +
r2(r − k)

2(r − k + 1)
∥ℏ∥2 − r

2
divH(ℏ(p))

+
3

2
∥AV∥2 + 1

2
∥TV∥2. (42)



CHEN INVARIANTS FOR RIEMANNIAN SUBMERSIONS 1015

The equality of (42) holds at p ∈ M if and only if AH vanishes identically and the
shape operators SX1 , . . . , SXn of Vp take forms as follows:

SX1
=



T 1
11 0 · · · 0
0 T 1

22 · · · 0
...

...
. . .

...
0 0 · · · T 1

kk

0

0

(
k∑

i=1

T 1
ii

)
Ir−k


, (43)

SXs
=



T s
11 T s

12 · · · T s
1k

T s
12 T s

22 · · · T s
2k

...
...

. . .
...

T s
1k T s

2k · · · −
k−1∑
i=1

T s
ii

0

0 0n−k


, s ∈ {2, . . . , n} . (44)

Proof. Let Lk be a k-plane section of Vp. We choose an orthonormal basis
{U1, . . . , Ur, X1, . . . , Xn} on TpM such that V = Span{U1, . . . , Ur} and
H = Span{X1, . . . , Xn}. We write

T s
ij = g(TH(Ui, Uj), Xs) (45)

for any i, j ∈ {1, . . . , r} and s ∈ {1, . . . , n}. Suppose that the mean curvature vector
ℏ(p) is in the direction of X1 and X1, ..., Xn diagonalize the shape operator SX1

. If
we put

η = 2τ(p)− 2τ̂(p)− 2τ̌(p)− r2(r − k)

(r − k + 1)
∥ℏ∥2 + r divH(ℏ(p))

−3
∥∥AV∥∥2 − ∥TV∥2 + ∥AH∥2 (46)

in (41), it follows that

r2∥ℏ∥2 = (n− k + 1)(η + ∥TH∥2). (47)

The equation (47) is equivalent to(
r∑

i=1

T 1
ii

)2

= (n− k + 1)

η +

r∑
i=1

(
T 1
ii

)2
+

n∑
s=2

r∑
i,j=1

(
T s
ij

)2 . (48)

Applying Lemma 2 to equation (48), we get

2
∑

1≤i<j≤k

Tn+1
ii Tn+1

jj ≥ η +

n∑
s=2

r∑
i,j=1

(
T s
ij

)2
. (49)
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On the other hand, we have from (41) that

τ (Lk) = τ̂ (Lk) +
∑

1≤i<j≤k

T 1
iiT

1
jj +

n∑
s=2

∑
1≤i<j≤k

(
T s
iiT

s
jj −

(
T s
ij

)2)
. (50)

From (49) and (50), we get

τ (Lk) ≥ τ̂ (Lk) +
1

2
η +

n∑
s=2

∑
j>k

{(T s
1j)

2 + (T s
2j)

2 + · · ·+ (T s
kj)

2}

+
1

2

n∑
s=2

(T s
11 + T s

22 + · · ·+ T s
kk)

2 +
1

2

n∑
s=2

∑
i,j>k

(T s
ij)

2. (51)

In view of (51), we see that

τ (Πk) ≥ τ̃ (Πk) +
1

2
η. (52)

From (47) and (52), we obtain (42).
If the equality case of (42) holds, then we have AH vanishes identically and

T 1
1j = T 1

2j = T 1
kj = 0, j = k + 1, . . . , r,

T s
ij = 0, i, j = k + 1, . . . , r,

T r
11 + T r

22 + · · ·+ T r
kk = 0

(53)

for s = 2, . . . , n. Applying Lemma 2, we also have

T 1
11 + T 1

22 + · · ·+ T 1
kk = T 1

ll, l = k + 1, . . . , n. (54)

Thus, with respect to a suitable orthonormal basis {X1, . . . , Xm} on Hp, the shape
operator of Vp becomes of the form given by (43) and (44). The proof of the
converse part is straightforward. □

In particular case of k = 2, we have the following:

Corollary 1. Let π : (M, g) → (B, g̃) be a Riemannian submersion. Then, for
each point p ∈ M and each plane section L ⊂ Vp, we have

δ(2) ≤ τ̂(p)− K̂(L) + τ̌(p) +
r2(r − 2)

2(r − 1)
∥ℏ∥2 − r

2
divH(ℏ)

+
3

2
∥AV∥2 + 1

2
∥TV∥2. (55)

The equality of (55) holds at p ∈ M if and only if AH vanishes identically and the
shape operators SX1 , . . . , SXn of Vp take forms

SX1 =

 a 0 0
0 b 0
0 0 (a+ b) Ir−2

 , (56)
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SXs
=

 cs ds 0
ds −cs 0
0 0 0r−2

 , s ∈ {2, . . . , n} . (57)

In particular case of k = r − 1, we have the following

Corollary 2. Let π : (M, g) → (B, g̃) be a Riemannian submersion. For each
vertical unit vector U , we have

RicV (U) ≤ R̂ic(U) + τ̌(p) +
r2

4
∥ℏ∥2 − r

2
divH(ℏ) +

3

2
∥AV∥2 + 1

2
∥TV∥2. (58)

The equality case of (58) holds for all unit vectors U ∈ Vp if and only if AH vanishes
identically and we have either

(i) if r = 2, π has totally umbilical fibers at p ∈ M ,
(i) if r ̸= 2, π has totally geodesic fibers at p ∈ M .

Proof. Let Lr−1 be a (r − 1)-plane section of Vp. We get from Theorem 2 that

δ(r − 1) ≤ τ̂(p)− τ̂(Lr−1) + τ̌(p) +
r2

4
∥ℏ∥2 − r

2
divH(ℏ)

+
3

2
∥AV∥2 + 1

2
∥TV∥2. (59)

Now, let U be a unit vertical vector field such that U = Ur. By a straightforward
computation, we obtain (58).

The equality of (59) holds if and only if the forms of shape operators SXs ,
s = 1, . . . , n, become

SX1
=



T 1
11 0 · · · 0 0
0 T 1

22 · · · 0 0
...

...
. . .

...
...

0 0 · · · T 1
(r−1)(r−1) 0

0 0 · · · 0

(
r−1∑
i=1

T 1
ii

)


, (60)

SXs
=



T s
11 T s

12 · · · T r
1(r−1) 0

T s
12 T s

22 · · · T s
2(r−1) 0

...
...

. . .
...

...

T s
1(r−1) T s

2(r−1) · · · −
r−2∑
i=1

T s
ii 0

0 0 · · · 0 0


, r ∈ {2, . . . , n} . (61)
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From (60) and (61), we see that the equality in (58) is valid for a unit vertical
vector field U = Ur if and only if{

T s
rr = T s

11 + T s
22 + · · ·+ T s

(r−1)(r−1)

T s
1r = T s

2r = · · · = T s
(r−1)r = 0.

(62)

for s ∈ {1, . . . , n}.
Assuming the equality case of (58) holds for all unit vertical vector fields, in view

of (62), for each s ∈ {1, . . . , n}, we have{
2T s

ii = T s
11 + T s

22 + · · ·+ T s
rr,

T s
ij = 0, i ̸= j

(63)

for all i ∈ {1, ..., r} and s ∈ {1, . . . , n}. Thus, we have two cases, namely either
r = 2 or r ̸= 2. In the first case we see that π has totally umbilical fibers, while
in the second case π has totally geodesic fibers. The proof of converse part is
straightforward. □

Remark 2. We note that (58) was also proved in [15] (see Theorem 4.1 in [15]).
In Theorem 2, we gave a new proof for this inequality.

4. Main Conclusions

In this section, we shall present a solution way with the help of differential
geometry tools for the following natural problem:

”Which conditions should provide to the horizontal divergence or the convergence
receives to the maximum value or minimum value?”

To obtain minimum or maximum values of the vertical motion (or horizontal
divergence) it can be considered a Riemannian submersion on E3 to E2. Moreover,
we can regard to different Riemannian submersions such as a Riemannian submer-
sion on a three dimensional Riemannian manifold to two dimensional Riemannian
manifold as

π : M3 → N2. (64)

It can also be considered globally in high dimensional Riemannian manifolds with
taking a Riemannian submersion on m-dimensional Riemannian manifold to n-
dimensional Riemannian manifold.

Taking into account of the continuity equation and (42), (55) and (58) inequal-
ities, we get some result dealing minimum or maximum values of vertical motion
for a manifold admitting a Riemannain submersion.

As a consequence of (42), we obtain the following:

Corollary 3. Let π : En+r → En be a Riemannian submersion. Then we have

r

2
ω(p) ≥ δ(k)− r2(r − k)

2(r − k + 1)
∥ℏ∥2 − 3

2
∥AV∥2 − 1

2
∥TV∥2. (65)
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The vertical motion at a point p takes the minimum value if and only if AH vanishes
identically and the matrixes of shape operators of the vertical space of M take the
form as (43) and (44).

As a consequence of (55), we obtain the followings:

Corollary 4. Let π : En+r → En be a Riemannian submersion with integrable
horizontal distribution. Then we have

r

2
ω(p) ≥ δ(2)− r2(r − 2)

2(r − 1)
∥ℏ∥2 − 1

2
∥TV∥2. (66)

The vertical motion takes the minimum value if and only if the matrixes of shape
operators Sx1 , . . . , Sxn of the vertical space of M take the form as (56) and (57).

Corollary 5. Let π : En+r → En be a Riemannian submersion with totally geodesic
leaves and integrable horizontal distribution. Then we have

r

2
ω(p) = δ(2). (67)

From (58), we get the followings:

Corollary 6. Let π : En+r → En be a Riemannian submersion. For each vertical
unit vector U , we have

r

2
ω(p) ≥ RicV (U)− r2

4
∥ℏ∥2 − 3

2
∥AV∥2 − 1

2
∥TV∥2. (68)

The equality case of (68) holds for all unit vectors U ∈ Vp if and only if AH vanishes
identically and we have either

(i) if r = 2, π has totally umbilical fibers at p ∈ M ,
(ii) if r ̸= 2, π has totally geodesic fibers at p ∈ M .

Corollary 7. Let π : En+r → En be a Riemannian submersion with totally geodesic
fibers. For each vertical unit vector U , we have

r

2
ω(p) = RicV (U)− 3

2
∥AV∥2. (69)

Now we shall mention some examples:

Example 1. Consider the mapping π : E5 → E2 which is defined by

π(x1, x2, x3, x4, x5) =

(
1√
2
(x1 + x2),

1√
2
(x3 + x4)

)
.

Then, it is clear that π is a Riemannian submersion and the Jacobian of π is equal
to (

1√
2

1√
2

0 0 0

0 0 1√
2

1√
2

0

)
.
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The horizontal space and the vertical space are given by

H = Span{X1 =
1√
2

∂

∂x1
+

1√
2

∂

∂x2
, X2 =

1√
2

∂

∂x3
+

1√
2

∂

∂x4
}

and

V = Span{U1 = − 1√
2

∂

∂x1
+

1√
2

∂

∂x1
, U2 = − 1√

2

∂

∂x3
+

1√
2

∂

∂x4
, U3 =

∂

∂x5
},

respectively. By a straightforward computation, we get the tensor fields A, T , RicV
vanish and ω(p) = divH(ℏ) = 0 from (3). Therefore, π is a trivial example satisfying
Corollary 3-Corollary 7.

Example 2. (Example 5.1 in [15])
Let us consider the Remannian submesion π : M → E3 defined by

π(x1, x2, x3, x4, x5) = (x1 cosx3 + x2 sinx3, x4, x5) ,

where M is a non-flat submanifold of E5 such that cotx3 = x1

x2
, x2 ̸= 0 and x3 ∈(

0, π
2

)
. Here, the horizontal space and the vertical space of M are given by

H = Span{X1 = sinx3
∂

∂x1
+ cosx3

∂

∂x2
, X2 =

∂

∂x4
, X3 =

∂

∂x5
}

and

V = Span{U1 = − cosx3
∂

∂x1
+ sinx3

∂

∂x2
, U2 =

∂

∂x3
},

respectively. By straightforward computations, we have TV(U2, X1) = −U1,
TH(U1, U2) = X1 and the other components of operators TH, TV , AH, AV vanish

identically. Moreover, we have R̂ic(U1) = 1, RicV (U1) = RicV (U2) = 0 and ω(p) =
0 from (3). Considering these facts, we obtain the left hand side of 68 is equal to
0 and the right hand side of (68) is equal to −1 for U = U1. This inequality also
satisfies for U = U2. This shows that the correctness of (68) and π is an example
of Corollary 6.
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