

Meteorolojik Kuraklığın Zamansal ve Alansal Özelliklerine İklim Değişikliğinin Etkisi, Sakarya Havzası Örneği

Effect of Climate Change on Spatiotemporal Characteristics of Meteorological Drought in Sakarya Basin, TURKEY

¹Akın DUVAN (D²Gaye AKTÜRK (D³Osman YILDIZ (D

^{1,2,3}Kırıkkale Üniversitesi, Mühendislik Fakültesi, 71450, Kırıkkale ¹akinduvan@kku.edu.tr, ²gayeoguzturk@kku.edu.tr, ³osmanyildiz@kku.edu.tr

Araştırma Makalesi/Research Article

ARTICLE INFO	A B S T R A C T			
Article history	Drought is a natural disaster that expresses the water scarcity experienced as			
Received : 2 July 2021 Accepted : 31 July 2021	a result of the decrease in the amount of water needed by all living things below the average. This study was conducted for Sakarya Basin with water shortage in Turkey in the semi-arid climate. Real precipitation data obtained from meteorology observation stations and precipitation projection data			
<i>Keywords:</i> Drought, Sakarya Basin, SPI, HadGEM2-ES	obtained via RCP 4.5 and 8.5 scenarios of the HadGEM2-ES global climate model were used as data. The Standard Precipitation Index (SPI) was used to determine the severity of the drought and the Inverse Distance Weighting (IDW) method was used to determine the areal distribution of the drought. After this analysis, drought intensity-areal extent-frequency curves of the basin were created. Through these graphs, the spatial and temporal characteristics of the drought were examined for the basin, and it was found that the drought intensity values obtained with the actual precipitation data were greater.			
	© 2021 Bandirma Onyedi Eylul University, Faculty of Engineering and Natural Science. Published by Dergi Park. All rights reserved.			
MAKALE BİLGİSİ	ÖZET			
Makale Tarihleri	Kuraklık yerkürede yaşayan tüm canlı varlıkların yaşamını sürdürebilmesi			
Gönderim : 2 Temmuz 2021 Kabul : 31 Temmuz 2021	için gerekli su miktarının belirli bir zaman süresince ortalamanın altına düşmesi sonucu yaşanan su kıtlığını ifade eden doğal bir afettir. Çalışmada yarı kurak iklimde bulunan Türkiye'de su sıkıntısı yaşayan Sakarya Havzası			
<i>Anahtar Kelimeler:</i> Kuraklık, Sakarya Havzası, SYİ, HadGEM2-ES	için uygulama yapılmıştır. Veri olarak meteoroloji gözlem istasyonlarından alınan gözlemlenmiş aylık toplam yağış verileri ile HadGEM2-ES küresel iklim modelinin RCP 4.5 ve 8.5 senaryoları ile elde edilen yağış projeksiyon verileri kullanılmıştır. Kuraklık şiddeti tespiti amacıyla Standart Yağış İndisi (SYİ), kuraklığın alansal dağılımını tespit edebilmek amacıyla da Ters Mesafe Ağırlıklı Enterpolasyon Yöntemi (Inverse Distance WeightingIDW) kullanılmıştır. Daha sonra havzanın kuraklık şiddeti-alan yüzdesi- frekans eğrileri oluşturulmuştur. Oluşturulan bu grafikler yardımıyla havza için kuraklığın zamansal ve alansal özellikleri incelenmiş, gözlemlenmiş yağış verileri ile elde edilen kuraklık şiddeti değerlerinin daha büyük olduğu görülmüştür.			
	Deroi Park tarafından yayınlanmaktadır. Tüm Hakları Saklıdır			

1. GİRİŞ

Kuraklık dünyada etkisini gittikçe artırmasına rağmen henüz tam anlamı ile anlaşılamamış ve etkileri yeterince değerlendirilmemiş doğal afetlerin en tehlikelisidir. Bununla beraber evrensel olarak net bir şekilde kabullenilmiş bir tanımı olmasa da kuraklık, Birleşmiş Milletler Çölleşme ile Mücadele Sözleşmesinde "yağışların kaydedilen normal düzeylerin önemli ölçüde altına düşmesi sonucu arazi ve kaynak üretim sistemlerini olumsuz etkileyen ve ciddi hidrolojik dengesizliklere yol açan doğal olay" olarak tanımlanır [1].

Kuraklık yönetiminin temel unsurlarından biri de kuraklık izleme sistemleridir [2]. Kuraklık indeksleri kuraklığı izlemek amacıyla kullanılan araçların başında gelmektedir. Bu kuraklık indekslerinden olan standart yağış indeksi (SYİ) [3], en çok kullanılan indekslerden biridir. SYİ hesap kolaylığı ve farklı zaman ölçeklerine uygulanabilir olması nedeniyle meteorolojik kuraklık incelemesinde sıkça kullanılmaktadır.

Birçok meteorolojik veri (sıcaklık, rüzgâr nem vs.) gibi yağışlar da noktasal olarak ölçülebilmektedir. Bu noktasal ölçüm verilerini daha iyi anlayabilmek amacıyla noktasal veriler alansal verilere dönüştürülebilmektedir. Bu dönüşümü yapabilmek amacıyla farklı alansal enterpolasyon yöntemleri kullanılmakta olup bu dönüşümler Coğrafi Bilgi Sistemi (CBS) programları ile yapılabilmektedir.

Geçtiğimiz yıllarda farklı yöntemler kullanılarak kuraklığın alansal incelenmesi üzerine birçok çalışma yapılmıştır [4-10]. Ayrıca CBS programları kullanılarak farklı meteorolojik verilerin alansal dağılımı üzerine de çalışmalar yapılmaktadır [11-14].

Geçtiğimiz yıllarda yapılan birçok çalışmada iklim değişikliğinin özellikle su kaynaklarını ve çevreyi muazzam şekilde etkilediğine dair önemli kanıtlar ortaya koymuştur [15,16]. İklim değişikliğini incelemek için kullanılan yöntemlerden biri de temsili konsantrasyon yollarına (RCP) dayalı küresel iklim modeli (GCM) simülasyonlarının kullanımıdır. GCM tabanlı veriler iklim değişikliğinin kuraklık üzerindeki etkisini ortaya koymak amacıyla birçok çalışmada kullanılmıştır [16-20].

Görüldüğü üzere gözlemlenmiş yağış verileri ve iklim modeli verileri kullanılarak yapılan kuraklık çalışmaları literatürde bulunmaktadır. Çalışmanın gözlemlenmiş yağış verileri ile iklim modeli verileri kullanarak yapılmış kuraklığın zamansal ve alansal özelliklerinin karşılaştırıldığı ilk çalışma olduğu düşünülmektedir.

2. MATERYAL VE METOT

2.1. Çalışma Alanı

Sakarya Havzası, Türkiye'nin kuzeybatısında yer alan, 58160 km² alana sahip bir akarsu havzasıdır. Türkiye'nin 25 akarsu havzasından biri olan havzanın etrafında Kızılırmak, Konya, Susurluk, Akarçay ve Batı Karadeniz havzaları bulunmaktadır [21,22]. Şekil 1'de Sakarya Havzasının konumu gösterilmiştir.

Şekil 1. Sakarya havzası konumu

Havzanın ana toplama kolu Sakarya Nehri'dir. Eskişehir'in güney tarafında, 800 m rakımda Çifteler ve Sakarbaşı Kaynak'larından doğar, Ankara Çayı, Porsuk Çayı, Göksu Çayı, Karasu Çayı, Mudurnu Çayı ve Çark Suyu dere ve yan kolları alarak kuzeye yönünde akıp Karadeniz'e dökülür. Havza; kuzeyde Bolu Dağları, batıda Domaniç Dağı ve Uludağ, doğudan ise Elmadağ ile İdrid Dağı ile çevrilmiştir. Havzada ortalama yükseklik 965 metredir [21,22]. Havza içerisinde Devlet Meteoroloji İstasyonuna ait 17 yağış istasyonu bulunmaktadır.

Sakarya Havzasında kişi başına ortalama 1000- 1700 m³ su düşmektedir ve bu nedenle su sıkıntısı yaşayan havzalar konumundadır. Havzada yerüstü ve yeraltı suları kullanım sınırına ulaşmış durumdadır. Havzada İç

Tablo 1. Sakarya havzası karakteristikleri Birim Karakteristik Değer km² Drenaj Alanı 58.160 kişi Nüfus (2012) 7.588.960 kişi/ km² Nüfus Yoğunluğu 130 mm Yıllık Ortalama Yağış Yüksekliği 479 m Ortalama Rakım 965 °C Ortalama Sıcaklık 10.6

Anadolu Karasal, Karadeniz ve Marmara tipi Akdeniz iklimi görülmektedir. Sakarya Havzasına ait karakteristikler Tablo 1'de sunulmuştur.

2.2. SYİ Yöntemi

Standart Yağış İndisi (SYİ), 1993 yılında Mc.Kee ve arkadaşları tarafından kuraklığı tanımlamak ve izlemek amacıyla geliştirilmiştir. Bu indis Dünya Meteoroloji Örgütü tarafından meteorolojik kuraklığın izlenmesi için bir başlangıç noktası olduğu vurgulanmıştır ve basitliği, aylık veri gerekliliğinden dolayı daha önceki pek çok çalışmada kullanılmıştır ve geniş çapta kabul görmektedir. Standart Yağış İndeksi (SYİ) esas olarak belirlenen zaman dilimi içinde yağışın ortalamadan olan farkının standart sapmaya bölünmesi ile elde edilir. Bu yöntemle, 1 aylıktan 48 aylığa kadar farklı zaman dilimlerinde inceleme yapılarak yağış eksikliğinin değişik su kaynakları üzerine yapıtığı etkiler görülebilir.

Herhangi bir X_1, X_2, \ldots, X_n yağış zaman serisi için standart yağış serisi, x_i , eşitlik 1 kullanılarak hesaplanır.

$$x_i = \frac{x_i - \overline{x}}{s_x} \tag{1}$$

X : Serinin ortalaması

S_x: Serinin standart sapması

Eşitlik 1 sonucu elde edilen negatif değerler yağış eksikliğini ya da kurak dönemleri gösterirken, pozitif değerler yağış fazlalığını ya da sulak dönemleri gösterir. McKee ve arkadaşları tarafından farklı SYİ aralıkları için dört ayrı kuraklık sınıflandırması yapılmıştır. Yapılan bu kuraklık sınıflandırması Tablo 2'de gösterilmiştir.

Tablo 2. SYİ yönteminde kullanılan kuraklık sınıflandırmaları

Kuraklık Sınıfi
Hafif Kurak
Orta Kurak
Şiddetli Kurak
Çok Şiddetli Kurak

2.3. Veriler

Çalışmada gözlemlenmiş yağış verileri olarak 1956 – 2011 yılları arası Şekil 2'de görülen meteoroloji gözlem istasyonlarından elde edilen aylık toplam yağış verileri ve 2020-2098 yılları arası HadGEM2-ES küresel iklim modelinin RCP 4.5ve RCP 8.5 senaryolarına ait yağış projeksiyon verileri kullanılmıştır.

Şekil 2. Çalışmada kullanılan meteoroloji gözlem istasyonları ve küresel iklim modelinin grid noktaları

Çalışmada kullanılan MGM istasyonlarına ve bu istasyonlara en yakın noktada bulunan küresel iklim modeli gridlerine ait bilgiler Tablo 3'te verilmiştir.

Tablo 3. Çalışmada kullanılan MGM istasyonlarına ve bu istasyonlara en yakın noktada bulunan	küresel iklin
modeli gridlerine ait bilgiler	

İstasyon	İstasyon Adı	İstasyon	İstasyon	İstasyon	Veri	Grid No	Grid	Grid	Grid	Veri
No		Enlem	Boylam	Rakım	Yılları		Enlem	Boylam	Rakım	Yılları
17190	AFYONKARAHİSAR	38.738	30.5604	1034	1956-	2024	38.7028	30.4739	1223	2020-
					2011					2098
17015	AKÇAKOCA	41.0895	31.1374	10	1956-	3227	40.9203	31.2283	497	2020-
					2011					2098
17130	ANKARA	39.9727	32.8637	891	1956-	2734	39.9596	32.9025	1092	2020-
					2011					2098
17680	BEYPAZARI	40.1608	31.9172	682	1956-	2830	40.1674	31.9413	990	2020-
					2011					2098
17120	BİLECİK	40.1414	29.9772	539	1956-	2822	40.1853	30	655	2020-
					2011					2098
17070	BOLU	40.7329	31.6022	743	1956-	3129	40.728	31.7143	1115	2020-
					2011					2098
17702	BOZÜYÜK	39.9039	30.0525	754	1956-	2622	39.8146	30	979	2020-
					2011					2098
17116	BURSA	40.2308	29.0133	100	1956-	2818	40.1809	29.0292	549	2020-
					2011					2098
17080	ÇANKIRI	40.6082	33.6102	755	1956-	3137	40.678	33.6715	1158	2020-
					2011					2098
17191	CİHANBEYLİ	38.6503	32.9226	969	1956-	2034	38.6645	32.8424	1002	2020-
					2011					2098
17072	DUZCE	40.8437	31.1488	146	1956-	3227	40.9203	31.2283	497	2020-
					2011					2098
17752	EMIRDAG	39.0098	31.1463	983	1956-	2227	39.067	31.1918	1093	2020-
					2011					2098
17123	ESKIŞEHIR	39.8119	30.5287	787	1956-	2624	39.8135	30.4824	864	2020-
					2011					2098
17750	GEDIZ	38.9947	29.4003	736	1956-	2219	39.0714	29.2848	1127	2020-
					2011					2098
17662	GEYVE	40.5214	30.296	100	1956-	3023	40.556	30.2442	489	2020-
					2011					2098
17832	ILGIN	38.2763	31.894	1036	1956-	1830	38.3168	31.8842	1159	2020-
					2011					2098

Müh.Bil.ve Araş.Dergisi, 2021; 3(2) 207-217

17135	KIRIKKALE	39.8433	33.5181	751	1956-	2637	39.7518	33.6163	969	2020-
					2011					2098
17664	KIZILCAHAMAM	40.4729	32.6441	1033	1956-	3033	40.5221	32.6851	1337	2020-
					2011					2098
17066	KOCAELİ	40.7663	29.9173	74	1956-	3122	40.7419	30	270	2020-
					2011					2098
17754	KULU	39.0788	33.0657	1005	1956-	2235	39.0273	33.0973	979	2020-
					2011					2098
17155	KÜTAHYA	39.4171	29.9891	969	1956-	2422	39.4441	30	1177	2020-
					2011					2098
17679	NALLIHAN	40.1733	31.332	650	1956-	2827	40.1783	31.2134	1005	2020-
					2011					2098
17728	POLATLI	39.5834	32.1624	886	1956-	2531	39.6068	32.1642	906	2020-
					2011					2098
17069	SAKARYA	40.7676	30.3934	30	1956-	3124	40.7407	30.4898	307	2020-
					2011					2098
17726	SIVRIHISAR	39.4452	31.5352	1070	1956-	2428	39.4341	31.4386	938	2020-
					2011					2098
17704	TAVŞANLI	39.5384	29.4941	833	1956-	2520	39.6282	29.5189	1077	2020-
	,				2011					2098
17188	UŞAK	38.6712	29.404	919	1956-	2019	38.7014	29.2891	903	2020-
	,				2011					2098
17828	YALVAÇ	38.283	31.1778	1096	1956-	1827	38.3274	31.1777	1236	2020-
	*				2011					2098
17798	YUNAK	38.8205	31.7258	1148	1956-	2129	38.8754	31.6634	1038	2020-
					2011					2098

2.3.1. Gözlemlenmiş Yağış Verileri

Çalışmada kullanılan gözlemlenmiş yağış verileri Meteoroloji Genel Müdürlüğü (MGM) tarafından işletilen meteoroloji gözlem istasyonlarından 1956 ve 2011 dönemleri için yağış kayıtlarından elde edilen aylık toplam yağış verileridir.

2.3.2. HadGEM2-ES Verileri

HadGEM2 (Hadley Merkezi Küresel Çevre Modeli sürüm 2), Birleşik Krallık Meteoroloji Servisi'ne bağlı bir araştırma kuruluşu olan Hadley Center tarafından geliştirilmiş ikinci nesil küresel bir modeldir [23]. Bu modelin benzer fiziksel özelliklere sahip fakat farklı yapılarda birçok sürümü bulunmakla beraber HadGEM2 serisi Hükümetler arası İklim Değişikliği Panaeli (IPCC) 5. Raporu hazırlıklarında kullanılan modellerden bir tanesidir. Modelin yatay çözünürlüğü, enlemi 1,25 derece ve boylamı 1,875 derece olan, 192×145 adet grid hücresi ile yerküre temsil edilmektedir. Bu çözünürlük değeri yaklaşık olarak Ekvator'da 208×139 km, 55. enlemlerde 120×139 km'dir. Genişletilmiş dikey yükseklik, stratosferin yatay ve geniş iklime etkisinin çalışma amacı ile 60 seviye ile dikeyde 85. km'ye kadar çıkabilmektedir. Okyanus bileşeni ise, kutuplar ile 30 enlemler arasında, boylam çözünürlüğü 1 derece ve enlem çözünürlüğü 1 derece olan, toplamda 360×216 adet grid hücresinden oluşmaktadır. Dikeyde ise eşit olmayan 40 seviyeden (yüzeyde çözünürlüğü 10 m'yekadar ulaşabilmektedir). Model ile ilgili daha fazla detay Collins ve arkadaşlarının (2011) ve Martin ve arkadaşlarının (2011) çalışmalarında bulunabilir.

2.3.3. Temsili Konsantrasyon Yolları (RCP)

İklim senaryolarında, farklı temsili konsantrasyon rotaları (Representative Concentration Pathways RCP) genellikle küresel sera gazı emisyonlarının yıllık değişimlerine, sosyo-ekonomik ve teknolojik gelişme varsayımlarına, iklimi etkileyen gaz emisyonlarının etkisine ve atmosferik partikül değişikliklerine dayalı olarak birbirinden ayırt edilir. RCP tipleri ve özellikleri Tablo 4'te gösterilmiştir.

Tablo 4. RCP tipleri ve özellikleri						
RCP	Işınım zorlanması	Zaman	Toplam konsantrasyon	Gaz emisyonları		
RCP 8.5	> 8.5 W/m ²	2100	~1370 ppm	2100'e kadar sürekli artış		
RCP 6.0	~6 5 W/m ²	2100 sonrası	~850 ppm	Yüzyılın Son Çeyreğinde Düşüş		
RCP 4.5	~4.55 W/m ²	2100 öncesi	~650 ppm	Yüzyılın ortalarından itibaren düşüş		
RCP 2.6	~3.05 W/m ²	2100 öncesi	~490 ppm	Yüzyılın ilk çeyreğinde düşüş		

Bu çalışmada kullanılan RCP senaryoları (yani RCP 8.5 ve 4.5), IPCC 5. Değerlendirme raporunda en çok kullanılan senaryolardır. Toplam ışınım zorlama yolları ve 2100'e kadar olan seviyeleri ile tanımlanmıştır. Nispeten, daha karamsar RCP 8.5 senaryosu, gelecekte emisyon azaltımı hakkında herhangi bir politika değişikliği olmayacağını varsaymaktadır artan sera gazı emisyonları, atmosferdeki sera gazı konsantrasyonunu

artıracaktır. Öte yandan, nispeten daha iyimser olan RCP 4.5 senaryosu, radyatif zorlamanın küresel emisyon azaltma politikalarının yardımıyla 2100'den kısa bir süre sonra stabilize olacağını öngörmektedir [25].

Bu modelin iyimser (RCP 4.5) ve kötümser (RCP 8.5) senaryolarına ait yağış verileri MGM araştırma dairesi başkanlığı klimatoloji şube müdürlüğünden alınmış, çalışmada kullanılan meteoroloji gözlem istasyonuna en yakın noktanın değerleridir (Şekil 2,Tablo3).

2.4. Enterpolasyon Yöntemi Seçimi

Enterpolasyon, bilinen noktalardaki verileri kullanarak yeni verilerin hesaplanmasını sağlayan bir süreçtir. CBS programları yardımı ile noktasal veriler enterpolasyon yapılarak alansal verilere dönüştürülebilmektedir. Bu çalışmada ArcGIS 10.1 programı yardımıyla Ters Mesafe Ağırlıklı Enterpolasyon yöntemi (Inverse Distance Weighting -IDW) ve Kriging Enterpolasyon yöntemi kullanılarak noktasal SYİ değerleri alansal değerlere dönüştürülmüştür.

IDW yöntemi örnek noktaların bilinen değerleri yardımıyla bilinmeyen noktaların değerlerinin belirlenmesinde kullanılır. Bilinen noktadan uzaklaşan çeşitli noktalar mesafedeki artışa bağlı olarak bilinmeyen noktaların değeri hesap edilir. Tahmin edilen bu değerler, yakın civardaki noktalara uzaklık ve büyüklüğe ait fonksiyon olup, mesafenin artması ile tahmin edilecek nokta üzerindeki etki ve önemi azalır.

Kriging yöntemi, bilinen yakın noktalardan alınmış değerleri kullanarak, diğer noktalardaki değerlerin en iyi ve kararlı sonuçlarını tahmin eden bir yöntemdir. Kriging yönteminde tahmin edilecek bir noktada araştırılan değer için enterpolasyon yapmada bu noktaya komşu ve değerleri bilinen en az 6 ile 8, en çok 16 ile 24 arasında farklı nokta kullanılır.

1956-2011 yılları arasındaki yağış verilerinden SYİ 1 değerleri hesaplanmıştır. Yıllık kuraklık şiddet değerlerini elde etmek için, o yıldaki aylarda -1.5'dan küçük SYİ değerleri toplanarak 12'ye bölünmüş ve bu değer SYİ değeri -1.5'dan küçük olan ay sayısı ile çarpılmıştır. Bu değeri elde etmekteki amaç her kuraklık olayını belirli bir yıl içinde eşit olarak dağıtmak ve kuraklığı aralıksız olarak incelemektir.

15 havza içi 14 tane de havzaya komşu olmak üzere toplam 29 noktanın yıllık SYİ değerinden, havza içindeki Geyve, Beypazarı ve Bozüyük yağış istasyonlarının SYİ 1 değerleri alansal enterpolasyon yönteminde tahmin edilmek üzere ayrılmış ve 26 nokta ile alansal enterpolasyon yapılmıştır. Bu üç istasyonun seçilme nedeni aylık toplam yağış verilerinin ham olarak daha az eksiğe sahip olmamasıdır. Diğer bir deyişle bu üç istasyonda verilerin gerçeklik oranı daha fazladır. Daha sonra Geyve, Beypazarı ve Bozüyük istasyonlarının gerçek değerleri ile tahmin edilen değerleri arasındaki doğruluk karşılaştırılmıştır. Bu doğruluk karşılaştırması yapılırken tahmin edilen istasyonların gerçek değerleri ile tahmin edilen değerleri arasındaki doğruluk karşılaştırılmıştır. Bu doğruluk karşılaştırması yapılırken tahmin edilen istasyonların gerçek değerleri ile tahmin edilen değerleri arasındaki doğruluk karşılaştır. Bu doğruluk karşılaştırması yapılırken tahmin edilen istasyonların gerçek değerleri ile tahmin edilen değerleri arasındaki doğruluk karşılaştır. Bu doğruluk karşılaştırması yapılırken tahmin edilen istasyonların gerçek değerleri ile tahmin edilen değerleri arasındaki determinasyon katsayısı (R²), ortalama mutlak hata (MAE), ortalama kare hatalar (MSE) ve mutlak hata (ME) dikkate alınmıştır. Her üç istasyon için determinasyon katsayısı, ortalama mutlak hata ve ortalama kare hatalar IDW yönteminin çalışma alanı için daha iyi olduğuna karar verilmiştir. Tahmin edilen istasyonlara ait determinasyon katsayısı (R²), ortalama mutlak hata (MAE), ortalama kare hatalar (MSE) ve mutlak hata (MSE) ve mutlak hata (MSE) ve mutlak hata (MSE) ve mutlak hata (MSE) ve mutlak hata (MSE) ve mutlak hata (MSE) ve mutlak hata (MSE) ve mutlak hata (ME) değerleri Tablo 5'te verilmiştir.

	Rui e flutu.	iai (INDE) ve matiak nata ((iii) degenen	
		GEYVE	BEYPAZARI	BOZÜYÜK
\mathbf{R}^2	IDW	0.66	0.5915	0.4191
	KRIGING	0.6003	0.5295	0.3644
MAE	IDW	0.2679	0.3971	0.345
	KRIGING	0.3012	0.4128	0.3564
MSE	IDW	0.1338	0.2902	0.2484
	KRIGING	0.1612	0.3331	0.2897
ME	IDW	0.0582	0.0191	0.13
	KRIGING	0.0492	0.0134	0.1029

Tablo 5. Tahmin edilen istasyonlara ait determinasyon katsayısı (R²), ortalama mutlak hata (MAE), ortalama kare hatalar (MSE) ve mutlak hata (ME) değerleri

2.5. Kuraklık Frekans Analizi

IDW yöntemi ile oluşturulan kuraklık haritaları CBS ortamında her bir piksel MS EXCEL ortamında her bir hücreye denk gelecek şekilde dönüştürülmüştür. Bu dönüşüm ile her bir pikselin noktasal kuraklık şiddeti elde edilmiştir. Daha sonra bu noktasal kuraklık şiddetleri %1, %10, %30, %50, %70 ve %100 için alansal yüzdelere dönüştürülmüştür. Bu alan yüzdeleri için 2, 5, 10, 25, 50, 100 yıllık dönüş aralıklı frekans analizi yapılmıştır. Yapılan frekans analizinin hangi dağılıma uyduğunu tespit etmek amacıyla Kolmogorov-Smirnov ve Ki-Kare testlerine tabi tutulmuştur. Testler sonucu dağılımın Gamma dağılıma uyduğu tespit edilmiştir.

3. BULGULAR

Sakarya havzası için oluşturulan kuraklık şiddeti- alan yüzdesi- frekans eğrileri ile 1956 ile 2011 yılları arasında gerçekleşen 2, 5, 10, 25, 50, 100 yıllık dönüş aralıklı kuraklık olaylarının şiddetleri ve havzadaki etki alanlarının yüzdeleri Şekil 3'te görülmektedir.

Şekil 3. Gözlemlenmiş yağış verileri kullanılarak oluşturulan kuraklık şiddeti- alan yüzdesi- frekans eğrileri

Havzanın %50'si için 2,5,10,25,50 ve 100 yıllık dönüş aralıklı kuraklık şiddetleri sırası ile -0.70, -1.30, -1.50, -1.80, -2.20, -2.40 olarak okunur. Bu da tekerrür süresi arttıkça kuraklık şiddetinin arttığını göstermektedir. Doğal olaylarda (taşkın, kuraklık, deprem vs.) tekerrür süresi arttıkça şiddetin de arttığı bilinmektedir.

Havza alanının yaklaşık %10'undan %70'ine kadar olan alan için 5 yıldan büyük tekerrür süreleri aşırı kuraklık (SYİ < -2) görülmüştür.

Havza için 2020-2098 yılları arası HadGEM-ES RCP 4.5 verileri için oluşturulmuş kuraklık şiddeti- alan yüzdesi- frekans eğrileri Şekil 4'te verilmiştir.

Şekil 4. HadGEM-ES RCP 4.5 verileri kullanılarak oluşturulan kuraklık şiddeti- alan yüzdesi- frekans eğrileri

HadGEM-ES RCP 4.5 verileri için 25 yıl ve daha fazla tekerrürü sürelerinde havza alanının yaklaşık %40'ından daha azında kuraklık şiddetinin -2'den küçük olduğu görülmektedir.

Havza için 2020-2098 yılları arası HadGEM-ES RCP 8.5 verileri için oluşturulmuş kuraklık şiddeti- alan yüzdesi- frekans eğrileri Şekil 5'te verilmiştir.

Şekil 5. HadGEM-ES RCP 8.5 verileri kullanılarak oluşturulan kuraklık şiddeti- alan yüzdesi- frekans eğrileri

HadGEM-ES RCP 4.5 verileri için 25 yıl ve daha fazla tekerrürü sürelerinde havza alanının yaklaşık %20'sindan daha azında kuraklık şiddetinin -2'den küçük olduğu görülmektedir. Gözlemlenmiş yağış verileri ve projeksiyon verilerinden elde edilmiş 2, 5, 10, 25, 50 ve 100 yıl tekerrür süreleri için kuraklık şiddeti- alan yüzdesi- frekans eğrileri sırasıyla Şekiller 6, 7, 8, 9, 10, 11 'de verilmiştir.

Tüm dönüş aralıkları için gözlemlenmiş yağış verilerinden elde edilmiş kuraklık şiddeti değerlerinin 2020-2098 yılları arası projeksiyon verilerinden elde edilen kuraklık şiddeti değerlerinden daha yüksek olduğu görülmektedir. Bu senaryolara göre 2020-2098 yılları arasında yağışların ortalamadan sapmasının daha düşük olacağı görülmektedir.

25 yıl dönüş aralığı için havza alanının %40' ından daha azında gözlemlenmiş yağış verileri ile elde edilen grafikte çok şiddetli kuraklık (SYİ < -2) gözlemlenirken, projeksiyon verilerinde aynı tekerrür süresi için alan yüzdesi eşik değerinin %20 olduğu görülmüştür.

Şekil 6. 2 yıl dönüş aralığı için kuraklık şiddeti-alan yüzdesi-frekans grafiği

Şekil 7. 5 yıl dönüş aralığı için kuraklık şiddeti-alan yüzdesi-frekans grafiği

Şekil 8. 10 yıl dönüş aralığı için kuraklık şiddeti-alan yüzdesi-frekans grafiği

Şekil 9. 25 yıl dönüş aralığı için kuraklık şiddeti-alan yüzdesi-frekans grafiği

Şekil 10. 50 yıl dönüş aralığı için kuraklık şiddeti-alan yüzdesi-frekans grafiği

Şekil 11. 100 yıl dönüş aralığı için kuraklık şiddeti-alan yüzdesi-frekans grafiği

4. SONUÇLAR

Kuraklık birçok canlının hayatını doğrudan veya dolaylı olarak etkileyen en önemli doğal afetlerden biridir. Bu nedenle iklim değişikliğinin kuraklık üzerindeki etkilerini araştırmak su kaynakları yönetimi için önem arz etmektedir. Bu çalışmada gözlemlenmiş yağış verileri ve HadGEM2-ES modelinin RCP 4.5 ve RCP 8.5 senaryoları kullanılarak Sakarya Havzasında meteorolojik kuraklığın zamansal ve alansal özellikleri araştırılmıştır.

Çalışmada kullanılan tüm dönüş aralıkları için HadGEM2-ES modelinin RCP 4.5 ve 8.5 verileri ile yapılan hesaplamalarda kuraklık şiddeti değerlerinin gözlemlenmiş yağış verileri ile hesaplanan kuraklık şiddeti değerlerinden daha düşük olduğu görülmüştür. Elde edilen bu değerler gelecek dönem için kuraklık tehlikesinin daha az olduğunu göstermemektedir. Nitekim MGM 2015 raporunda 1971-2000 dönemi referans alındığında Sakarya Havzası için HadGEM2-ES modelinin RCP 4.5 senaryosuna göre yağış ortalamalarında 2016-2040 yılları arası %5-10, 2041-2099 yılları arasında ise %0-5 arası azalma öngörülmektedir. Aynı modelin RCP 8.5 senaryosunda ise yağış ortalamalarında 2016-2070 yılları arası %0-5, 2071-2099 yılları arasında ise %5-10 arası azalma öngörülmektedir (MGM 2015). Bu durumda gelecek dönem yağışlarının ortalamadan daha az sapacağı kanısına varılabilir.

Projeksiyon verileri belirli parametreler kullanılarak oluşturulan modeller kullanılarak elde edilmiş değerlerdir. Bu değerler her ne kadar gerçek olmasa da geleceğe ışık tutması adına son yıllarda birçok çalışmada kullanılmış ve geçerliliği kabul edilmektedir. Bu bilgiler ışığında gelecekte farklı dönemler ve farklı referans yılları için de kuraklık tahmini yapılmalı ve yaşanabilecek olası su sıkıntıları için gerekli önlemler önceden alınmalıdır.

Yazar Katkıları

Akın DUVAN: Tüm hesapları yapmış ve makaleyi yazmıştır. (%60) Gaye AKTÜRK: Harita girdilerini üretmiş ve son okumada yardımcı olmuştur. (%20) Osman YILDIZ: Fikrin ortaya çıkmasını sağlamış ve son okumada yardımcı olmuştur. (%20)

Çıkar Çatışması

Makale yazarları aralarında herhangi bir çıkar çatışması olmadığını beyan ederler

Teşekkür

Tüm meteorolojik veriler Meteoroloji Genel Müdürlüğü(MGM)'nden temin edilmiştir. Veri temininde kolaylık sağlayan MGM'ye teşekkür ederiz.

KAYNAKÇA

- [1] WMO, "Extreme Agrometeorological Events", CagM-X Working Group, Geneva, 1997.
- [2] Z. Hao, A. AghaKouchak, N. Nakhjiri and A. Farahmand, "Global integrated drought monitoring and prediction system", vol. 1, no.1, pp. 1-10, 2014.
- [3] T. B. McKee, N. J. Doesken, and J. Kleist, "The relationship of drought frequency and duration to time scales", Proceedings of the 8th Conference on Applied Climatology vol. 17, no. 22, pp. 179-183, 1993.
- [4] A. I. Jasim, and T. A. Awchi, "Regional meteorological drought assessment in Iraq" Arabian Journal of Geosciences, vol.13, no. 7, pp.1-16, 2020.
- [5] M. Türkeş, "Türkiye'nin İklimsel Değişkenlik Ve Sosyo-Ekolojik Göstergeler Açısından Kuraklıktan Etkilenebilirlik Ve Risk Çözümlemesi" Ege Coğrafya Dergisi, vol. 26 no.2, pp.47-70, 2017.
- [6] M. H. Afshar, A. U. Sorman, and M. T. Yilmaz "Conditional copula-based spatial-temporal drought characteristics analysis—a case study over Turkey", Water, vol. 8, no. 10, pp.426, 2016.
- [7] O. Yıldız, "Assessing temporal and spatial characteristics of droughts in the Hirfanli dam basin, Turkey", Scientific Research and Essays, vol. 4, no. 4, pp. 249-255, 2009.
- [8] O. Yıldız, "Spatiotemporal Analysis Of Historical Droughts In The Central Anatolia, Turkey", Gazi University Journal Of Science, vol.27, no. 4, pp.1177-1184, 2014.
- [9] Duvan, G. Akatürk, and O. Yıldız, "Kuraklık Haritaları Oluşturmada IDW ile Kriging Enterpolasyon Metotlarının Karşılaştırılması ve

Sakarya Havzası Örneği", 10. Ulusal Hidroloji Kongresi pp.465-472, 2019.

- [10] T. W. Kim, J. B. Valdes, and J. Aparicio, "Frequency and spatial characteristics of droughts in the Conchos River Basin, Mexico", Water International, vol. 27, no. 3, pp. 420-430, 2002.
- [11] A. İlker, Ö. Terzi and E. Şener, "Yağışın Alansal Dağılımının Haritalandırılmasında Enterpolasyon Yöntemlerinin Karşılaştırılması: Akdeniz Bölgesi Örneği", Teknik Dergi, vol. 30, no. 3, pp. 9213-9219, 2019.
- [12] E. D. Taylan and D. Damçayırı, "Isparta Bölgesi Yağış Değerlerinin IDW ve Kriging Enterpolasyon Yöntemleri ile Tahmini", Teknik Dergi, vol.27, no. 3, pp. 7551-7559, 2016.
- [13] H. Doğan, D. Yılmaz, O. Kılıç,(2013). "Orta Kelkit Havzası'nın BazıToprak Özelliklerinin Ters Mesafe Ağırlık Yöntemi (IDW) ile Haritalanması ve Yorumlanması" Gaziosmanpaşa Bilimsel Araştırma Dergisi, vol. 6, pp. 46-54, 2013.
- [14] Ö. Doğru, M. Keskin, K. Özdoğdu, N. İliev, N. N. Uluğtekin, F. Bektaş Balçık, Ç. Göksel, S. Sözen, "Meteorolojik Verilerin Değerlendirilmesi ve Sunulması İçin Enterpolasyon Yöntemlerinin Karşılaştırılması", TMMOB Coğrafi Bilgi Sistemleri Kongresi, pp.31, 2011.
- [15] A. Loukas, L. Vasiliades, and J. Tzabiras, "Climate change effects on drought severity" Advances in Geosciences, vol.17, pp. 23-29, 2008.
- [16] A. D. Mehr, and E. Kahya "Climate change impacts on catchment-scale extreme rainfall variability: case study of Rize Province, Turkey", Journal of

Hydrologic Engineering, vol.22, no. 3, pp.05016037, 2017.

- [17] Wu, Z. Xian, and G. Huang, "Meteorological drought in the Beijiang River basin, South China: current observations and future projections", Stochastic environmental research and risk assessment, vol. 30, no. 7, pp. 1821-1834, 2016.
- [18] M. Osuch, R. J. Romanowicz, D. Lawrence, and W. K. Wong, "Trends in projections of standardized precipitation indices in a future climate in Poland", Hydrology and Earth System Sciences, vol. 20, no. 5, pp. 1947-1969, 2016.
- [19] M. H. Afshar, A.U. Sorman, F. Tosunoglu, B. Bulut, M.T. Yilmaz, and A.D. Mehr "Climate change impact assessment on mild and extreme drought events using copulas over Ankara, Turkey.", Theoretical and Applied Climatology, vol. 141, pp. 1045-1055, 2020.
- [20] A. D. Mehr, A.U. Sorman, E. Kahya, and H. M. Afshar "Climate change impacts on meteorological drought using SPI and SPEI: case study of Ankara, Turkey", Hydrological Sciences Journal, vol. 65, no. 2, pp.254-268, 2020.
- [21] S. Yaykıran, "Sakarya Havzası'nın Yüksek Çözünürlüklü Hidrolojik Modelinin Yapılandırılması", Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2016.
- [22] HKEP. "Havza Koruma Eylem Planları, Sakarya Havzası Raporu", T.C. Orman ve Su İşleri Bakanlığı adına TÜBİTAK Marmara Araştırma Merkezi, 2013.
- [23] W. J. Collins, N. Bellouin, M. Doutriaux-Boucher, N. Gedney, P. Halloran, T. Hinton, and S. Woodward "Development and evaluation of an Earth-system model–HadGEM2", Geoscientific Model Development, vol. 4, pp. 1051–1075, 2011.

- [24] G. M. Martin, et al., "The HadGEM2 family of met office unified model climate configurations", Geoscientific Model Development, vol. 4, pp. 723– 757, 2011.
- [25] D. P. Van Vuuren, et al. "The representative concentration pathways: an overview", Climatic change vol. 109, no. 1, pp.5-31, 2011.
- [26] M. Demircan, H. Gürkan, O. Eskioğlu, H. Arabacı, and M. Coşkun, "Climate change projections for Turkey: three models and two scenarios", Türkiye Su Bilimleri ve Yönetimi Dergisi, vol. 1, no. 1, pp. 22-43, 2017.
- [27] T. Stocker, "Climate Change 2013 The Physical Science Basis Contrubition of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change", Cambridge University Press, 2014.
- [28] M. A. Giorgetta, et al. "Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5". Journal of Advances in Modeling Earth Systems, vol.5, no. 3, pp. 572-597, 2013.
- [29] R. H. Moss, et al. "Towards new scenarios for the analysis of emissions: Climate change, impacts and response strategies", Intergovernmental Panel on Climate Change Secretariat (IPCC), 2008.
- [30] Meteoroloji Genel Müdürlüğü, Yeni Senaryolar ile Türkiye için İklim Değişikliği Projeksiyonları, TR2015-CC, 2015.
- [31] WMO, "Drought monitoring and early warning: Concepts, progress and future challenges", World Meteorological Organization, Geneva, 2006.