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ABSTRACT 
 

Lindley-geometric (LG) distribution is a mixture of Lindley and geometric distribution. We tackle the problem of estimation 

parameters for the LG distribution. For this purpose maximum likelihood, least-squares, weighted least-squares, Anderson-

Darling, and Crámer–von-Mises methods are used to estimate the two parameters of the LG distribution. We also consider an 

extensive Monte Carlo simulation study to evaluate these methods according to the biases and mean-squared errors (MSEs). 

Finally, eight real data applications are presented. 

 

Keywords: Point estimation, Geometric distribution, Lindley distribution, Lindley-geometric distribution, Monte Carlo 

simulation 
 

 

1. INTRODUCTION 
 

Statistical distributions are crucial in various lifetime modeling. The parameter(s) of the distribution 

provides information about the shape, skewness, or kurtosis of the distribution. It is necessary to 

estimate the parameter as accurately as possible to obtain efficient information about the distribution. 

The maximum likelihood method is generally preferred for parameter estimation. However, some 

methods of estimation are alternative to maximum likelihood method have been used. Many authors or 

researchers have studied the comparison of different estimation methods for various distributions. It is 

well-known that it is very important to support these studies with simulations and real data 

applications. Some of such studies in the literature can be listed as follows: Mazucheli et al. [1] 

compared different methods of parameters for the weighted Lindley distribution through Monte Carlo 

simulations. Gupta and Singh [2] discussed the estimation of the parameter of Lindley distribution 

under hybrid censoring. Singh et al. [3] considered Bayes estimation of parameters for Lindley 

distribution. Al-Zahrani and Gindwan [4] studied about two parameters Lindley distribution under 

hybrid censoring. Santo and Mazucheli [5] discussed the comparison of methods of estimation for 

Marshall-Olkin extended Lindley distribution. They considered six different methods to estimate the 

parameters of Marshall-Olkin extended Lindley distribution such as maximum likelihood, maximum 

product of spacing method, least-squares, weighted least-squares, Cramér–von Mises, and Anderson–

Darling methods in this study.  Generalized Lindley distribution which is a generalization of Lindley 

distribution was examined by Gui and Chen [6] in terms of joint confidence regions of its parameters. 

 

The main purpose of this paper is to compare five methods (maximum likelihood, least-squares, 

weighted least-squares, Anderson-Darling, and Crámer–von-Mises) of estimation for Lindley-

geometric distribution which is a compound a Lindley distribution and geometric distribution. The rest 

of this paper is organized as follows: In Section 2, Lindley-geometric distribution and a relevant 

literature review are given. Five methods of estimation are described in Section 3. A Monte Carlo 

simulation study is conducted to assess the performances of these estimators according to bias and 

MSEs criteria in Section 4. Section 5 provides eight real data applications. Lastly, conclusions are 

presented in Section 6.    
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2. LINDLEY-GEOMETRIC (LG) DISTRIBUTION 

 

LG distribution is suggested by Zakerzadeh and Mahmoudi [7]. The probability density function (pdf) 

and cumulative distribution function (cdf) are given by 
 

       

 



   
         

22

1 1 1 1
1 1

x xx
f x p x e p e                     (1) 

where  0, 0,1p   and 0x  . The LG distribution reduces the Lindley distribution when 0p  in 

(1).  Some authors have generated new models based on modifications of the LG distribution. 

Liyanage and Pararai [8] investigated the Lindley power series class of distributions. They described 

special cases of Lindley power series including LG, Lindley binomial, Lindley Poisson, and Lindley 

logarithmic (LL) distributions. They examined some properties of these models. Besides, they 

performed simulations and applications based on LL, including also their properties in [8]. Merovci and 

Elbatal [9] suggested a new distribution called transmuted Lindley geometric distribution. Diab and 

Muhammed [10] produced a new extension of LG distribution called Quasi Lindley geometric 

distribution. Gui and Zhang [11] proposed the complementary Lindley geometric distribution as an 

alternative LG and Lindley distribution. Elbatal and Khalil [12] introduced a new three parameters LG 

distribution using pdf (1). 

 

3. METHODS OF ESTIMATION 

 

In this section, five estimation methods are examined for estimating the unknown parameters of LG 

distribution. We study the maximum likelihood, least-squares, weighted least squares, Anderson-

Darling, and Crámer–von-Mises methods of estimation. 

  

Let 1 2, , , nX X X  be a random sample from the LG distribution. 
     1 2
  

n
X X X  symbolize the 

corresponding order statistics. Also, 
 ix  indicate the observed value of 

 iX  for 1,2, ,i n .  Then, 

the likelihood and log-likelihood function of the LG distribution are given, respectively, by 
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, where  , .pΘ  

Then, maximum likelihood estimator (MLE) of Θ is given by 

  1 argmax .
Θ

Θ Θ                         (4) 

Let us define the following functions which are used to obtain the least-squares, weighted least 

squares, Anderson-Darling and Crámer–von-Mises estimators: 
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Then, least square estimator (LSE), weighted least square estimator (WLSE), Anderson-Darling 

estimator (ADE) and Crámer–von-Mises estimator (CvME) of the parameter vector  Θ  are given, 

respectively by 

  2
ˆ argmin ,LSQ

Θ

Θ Θ                          (5) 

  3
ˆ argmin ,WLSQ

Θ

Θ Θ                          (6) 

  4
ˆ argmin ,ADQ

Θ

Θ Θ                          (7) 

  5
ˆ argmin ,CVMQ

Θ

Θ Θ                          (8) 

Five estimates given in (4)-(8) can be obtained by optim function included in the stats package in R 

with Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm which is known as a quasi-Newton 

method. The BFGS algorithm was firstly studied by Fletcher [13]. 
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4. SIMULATION STUDY 

 

In this section, 5000 trials are conducted to estimate the biases and MSEs of all estimators. Four true 

parameter settings are considered as follows:        0.5,0.3 , 0.75,0.9 , 1.25,0.5 , 1.5,0.7Θ .  The 

sample sizes are selected as  25,50,100,150,200,250n . The acceptance-rejection algorithm is used 

to generate data from  LG Θ  distribution.  The BFGS algorithm which is available in R is used to 

obtain five estimates given in (4)-(8). In Tables 1-2, biases and MSEs of MLE, LSE, WLSE, ADE, 

and CVME are reported. Tables 1-2 indicate that the biases and MSEs of five estimators are close to 

zero when the sample size increases as expected. From the simulation results, if one will use LG 

distribution in real data modeling, one can choose any estimation methods. 
 

Table 1. Average biases of all estimators 

  1Θ  
2Θ  

3Θ  
4Θ  

5Θ  

Θ  n    p    p    p    p    p  

(0.5,0.3) 25 -0.0291 0.1437 -0.1396 0.2557 -0.1276 0.2486 -0.0963 0.2499 -0.0416 0.0206 

 50 -0.0140 0.0853 -0.0733 0.1630 -0.0565 0.1483 -0.0469 0.1433 -0.0231 0.0421 

 100 -0.0084 0.0504 -0.0377 0.0917 -0.0259 0.0786 -0.0242 0.0800 -0.0129 0.0290 

 150 -0.0027 0.0234 -0.0223 0.0539 -0.0134 0.0424 -0.0130 0.0442 -0.0061 0.0112 

 200 -0.0001 0.0129 -0.0124 0.0304 -0.0061 0.0220 -0.0065 0.0252 -0.0004 -0.0020 

 250 0.0023 0.0020 -0.0094 0.0237 -0.0035 0.0132 -0.0038 0.01526 -0.0002 -0.0022 

(0.75,0.9) 25 0.4227 -0.1371 0.2556 -0.1312 0.1970 -0.1116 0.1902 -0.0817 0.5950 -0.2602 

 50 0.2563 -0.0827 0.1998 -0.0879 0.1584 -0.0751 0.1430 -0.0606 0.3692 -0.1407 

 100 0.1387 -0.0431 0.1347 -0.0541 0.0978 -0.0426 0.0886 -0.0362 0.2259 -0.0790 

 150 0.0984 -0.0297 0.0947 -0.0369 0.0682 -0.0281 0.0611 -0.0243 0.1577 -0.0531 

 200 0.0688 -0.0212 0.0678 -0.0276 0.0449 -0.0199 0.0361 -0.0164 0.1153 -0.0394 

 250 0.0507 -0.0158 0.0564 -0.0231 0.0368 -0.0163 0.0293 -0.0135 0.0961 -0.0328 

(1.25,0.5) 25 0.0055 0.0062 -0.2593 0.0853 -0.2341 0.0856 -0.1759 0.0952 0.0182 -0.1122 

 50 0.0218 -0.0185 -0.1403 0.0490 -0.0950 0.0359 -0.0753 0.0332 0.0008 -0.0472 

 100 0.0338 -0.0330 -0.0403 -0.0033 -0.0086 -0.0141 -0.0079 -0.0105 0.0302 -0.0531 

 150 0.0304 -0.0329 -0.0180 -0.0130 0.0039 -0.0206 0.0020 -0.0174 0.0286 -0.0462 

 200 0.0313 -0.0306 -0.0035 -0.0162 0.0136 -0.0225 0.0117 -0.0199 0.0313 -0.0410 

 250 0.0257 -0.0272 0.0020 -0.0183 0.0149 -0.0230 0.0126 -0.0205 0.0297 -0.0381 

(1.5,0.7) 25 0.2146 -0.0911 -0.1559 -0.0256 -0.1399 -0.0210 -0.0751 -0.0109 0.2602 -0.1875 

 50 0.1564 -0.0774 -0.0449 -0.0404 -0.0071 -0.0428 0.0055 -0.0370 0.1715 -0.1189 

 100 0.1039 -0.0509 -0.0136 -0.0282 0.0280 -0.0343 0.0283 -0.0312 0.0985 -0.0661 

 150 0.0682 -0.0340 -0.0061 -0.0205 0.0269 -0.0253 0.0228 -0.0227 0.0693 -0.0455 

 200 0.0604 -0.0286 -0.0072 -0.0151 0.0241 -0.0205 0.0188 -0.0178 0.0494 -0.0337 

 250 0.0531 -0.0248 0.0003 -0.0147 0.0283 -0.0199 0.0233 -0.0176 0.0456 -0.0296 
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Table 2. Average MSEs of  all estimators 

  1Θ  
2Θ  

3Θ  
4Θ  

5Θ  

Θ  n    p    p    p    p    p  

(0.5,0.3) 25 0.0155 0.0782 0.0693 0.4962 0.0578 0.6842 0.0340 0.1709 0.0668 0.7935 

 50 0.0092 0.0548 0.0344 0.2103 0.0233 0.1539 0.0179 0.1041 0.0321 0.2488 

 100 0.0056 0.0392 0.0174 0.1140 0.0109 0.0779 0.0096 0.0646 0.0166 0.1219 

 150 0.0043 0.0314 0.0116 0.0822 0.0073 0.0544 0.0067 0.0480 0.0112 0.0867 

 200 0.0033 0.0253 0.0085 0.0629 0.0053 0.0420 0.0050 0.0381 0.0084 0.0661 

 250 0.0029 0.0243 0.0068 0.0518 0.0044 0.0359 0.0042 0.0340 0.0068 0.0538 

(0.75,0.9) 25 0.6821 0.0655 1.2410 0.2586 1.0630 0.2213 0.6216 0.0615 2.1034 0.5247 

 50 0.3292 0.0307 0.6448 0.0757 0.5444 0.0618 0.3737 0.0348 0.8815 0.1133 

 100 0.1419 0.0111 0.3149 0.0287 0.2479 0.0215 0.1934 0.0152 0.3876 0.0374 

 150 0.0926 0.0064 0.2079 0.0164 0.1554 0.0114 0.1283 0.0088 0.2430 0.0201 

 200 0.0637 0.0041 0.1618 0.0115 0.1153 0.0077 0.0969 0.0061 0.1828 0.0136 

 250 0.0481 0.0030 0.1313 0.0090 0.0906 0.0058 0.0779 0.0048 0.1456 0.0104 

(1.25,0.5) 25 0.1580 0.0601 0.5947 0.4159 0.4908 0.3695 0.2725 0.1010 0.6709 0.7187 

 50 0.0983 0.0489 0.2899 0.1361 0.2032 0.1003 0.1609 0.0721 0.2962 0.1763 

 100 0.0650 0.0378 0.1561 0.0834 0.1054 0.0604 0.0927 0.0502 0.1592 0.0970 

 150 0.0456 0.0295 0.1080 0.0597 0.0710 0.0432 0.0659 0.0389 0.1100 0.0665 

 200 0.0379 0.0246 0.0835 0.0468 0.0560 0.0343 0.0528 0.0317 0.0852 0.0509 

 250 0.0311 0.0200 0.0658 0.0374 0.0445 0.0274 0.0426 0.0258 0.0671 0.0402 

(1.5,0.7) 25 0.5394 0.0649 1.4047 0.2946 1.2132 0.2475 0.6856 0.0751 1.9377 0.5644 

 50 0.3362 0.0505 0.7723 0.1148 0.5975 0.0897 0.4576 0.0607 0.9083 0.1643 

 100 0.1847 0.0280 0.4098 0.0547 0.2885 0.0413 0.2544 0.0347 0.4374 0.0655 

 150 0.1186 0.0179 0.2813 0.0348 0.1861 0.0254 0.1717 0.0229 0.2924 0.0394 

 200 0.0908 0.0131 0.2161 0.0272 0.1403 0.0193 0.1307 0.0173 0.2212 0.0297 

 250 0.0717 0.0100 0.1761 0.0212 0.1128 0.0149 0.1073 0.0139 0.1798 0.0229 

 

5. REAL DATA APPLICATIONS 

 

In this section, eight real data applications for the LG distribution are applied. LG distribution is fitted 

to the real data sets estimating the parameter using five methods of estimation. The MLE, LSE, 

WLSE, ADE, and CVME of the parameters of LG distribution are also obtained by the BFGS 

algorithm and reported in Table 4. The detailed information on the real data is given in Appendix, also 

descriptive information about the data is presented in Table 3. 

Table 3. Descriptive statistics and their references based on the eight real data sets  

 

Number of 

observation   
Mean Standard deviation Minimum Maximum References 

Data 1 55 259.1636 258.8003 1 1146 Mudholkar et al. [14] 

Data 2 101 1.0248 1.1193 0.01 7.89 Andrews and Herzberg [15] 

Data 3 40 4.0125 5.1652 0.5 24.5 Jorgensen [16]) 

Data 4 15 27.5466 20.7633 1.4 66.2 Lawless [17] 

Data 5 50 7.8210 9.2063 0.013 48.105 Murthy et al. [18]) 

Data 6 34 1.8794 1.9525 0.1 8 Bhaumik [19] 

Data 7 116 42.1293 32.9878 1 168 Nadarajah [20], Leiva et al. [21] 

Data 8 45 1.3414 1.2466 0.047 4.033 Bekker et al. [22] 
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Table 4. The parameter estimates of the parameters of LG distribution for all data sets 

 1Θ  
2Θ  

3Θ  
4Θ  

5Θ  

Data set   p    p    p    p    p  

1 0.0039 0.8133 0.0038 0.8116 0.0038 0.8112 0.0036 0.8482 0.0038 0.8116 

2 1.0886 0.4375 1.2537 0.2068 1.2343 0.2688 1.1035 0.4229 1.3065 0.1407 

3 0.1224 0.9390 0.1030 0.9572 0.0604 0.9825 0.0760 0.9749 0.0968 0.9618 

4 0.0661 0.1590 0.0308 0.8117 0.0362 0.7525 0.0450 0.6271 0.0420 0.6603 

5 0.1026 0.8764 0.0927 0.8837 0.0792 0.9147 0.0919 0.8996 0.1007 0.8649 

6 0.5455 0.6348 0.3010 0.8781 0.3670 0.8222 0.4774 0.7149 0.4402 0.7587 

7 0.0365 0.4662 0.0252 0.7474 0.0306 0.6254 0.0305 0.6298 0.0264 0.7238 

8 0.9136 0.3791 0.4691 0.8196 0.7253 0.6022 0.6858 0.6378 0.5668 0.7476 

 

6. CONCLUSION 

 

In this paper, LG distribution is studied in terms of some point estimations. LG distribution is 

proposed by Zakerzadeh and Mahmoudi [7]. They only examined the maximum likelihood for point 

estimation of LG distribution. Unlike their study, we provide five estimators including MLE, LSE, 

WLSE, ADE, and CvME of parameters of LG distribution. Thus, a new extension is provided for the 

estimation of the parameters for LG distribution. Monte Carlo simulation studies are performed for 

different parameter values and different sample sizes. It is concluded that as the sizes of samples 

increase, the MSEs and biases of all estimators decrease and close to zero. According to the simulation 

study results, it is seen that any of the five methods of estimation examined in this paper can be used 

in modeling real data. Also, we analyze eight real data set to illustrate the usefulness of LG 

distribution. The parameter estimates of LG distribution are also obtained using five different 

estimation methods for these practical data sets. 
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APPENDIX 

 

The eight real data sets used in the real data applications are given in detail below: 

Data Set 1: 7, 34, 42, 63, 64, 74, 83, 84, 91, 108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154, 

157, 160, 160, 165, 173, 176, 185, 218, 225, 241, 248, 273, 277, 279, 297, 319, 405, 417, 420, 440, 

523, 523, 583, 594, 1101, 1116, 1146, 1, 226, 1, 349, 1, 412,1, 417. 

Data Set 2: 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 

0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 

0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 

0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 

1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 

1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89. 

Data Set 3: 0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 1.50, 

1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 4.70, 5.00, 5.40, 5.40, 7.00, 

7.50, 8.80, 9.00, 10.20, 22.00, 24.50. 

Data Set 4: 1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2. 

Data Set 5: 0.013, 0.065, 0.111, 0.111, 0.163, 0.309, 0.426, 0.535, 0.684, 0.747, 0.997, 1.284, 1.304, 

1.647, 1.829, 2.336, 2.838, 3.269, 3.977, 3.981, 4.520, 4.789, 4.849, 5.202, 5.291, 5.349, 5.911, 6.018, 

6.427, 6.456, 6.572, 7.023, 7.087, 7.291, 7.787, 8.596, 9.388, 10.261, 10.713, 11.658, 13.006, 13.388, 

13.842, 17.152, 17.283, 19.418, 23.471, 24.777, 32.795, 48.105. 

Data Set 6: 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 

2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4,0.2. 

Data Set 7: 41, 36, 12, 18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 14, 34, 6, 30, 11, 1, 11, 4, 32, 23, 45, 115, 

37, 29, 71, 39, 23, 21, 37, 20, 12, 13, 135, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 7, 48, 35, 61, 79, 63, 

16, 80, 108, 20, 52, 82, 50, 64, 59, 39, 9, 16, 78, 35, 66, 122, 89, 110, 44, 28, 65, 22, 59, 23, 31, 44, 

21, 9, 45, 168, 73, 76, 118, 84, 85, 96, 78, 73, 91, 47, 32, 20, 23, 21, 24, 44, 21, 28, 9, 13, 46, 18, 13, 

24, 16, 13, 23, 36, 7, 14, 30, 14, 18, 20. 

Data Set 8: 0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 

0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 

1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 

4.003, 4.033.  


