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Abstract: Some relations involving the Ricci and scalar curvatures of totally n-umbilical real hypersur-
faces of a complex space form are examined. With the help of these relations, some results on totally
n-umbilical real hypersurfaces of a complex space form are given. Furthermore, these results are discussed
on totally n-umbilical real hypersurfaces of the 6-dimensional complex space form. Some characterizations

dealing totally n-umbilical real hypersurfaces of the 6-dimensional complex space form are obtained.
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1. Introduction

Since Riemannian curvature invariants play a significant role in classifying Riemannian manifolds
and their submanifolds, borrowing a term from biology, Chen called these invariants as Riemannian
DNA for Riemannian manifolds in [7-9] and established some important relations between the

intrinsic curvature invariants and extrinsic curvature invariants for submanifolds of a Riemannian
manifolds in 1990s. cf. [4-6]. Recently, many authors investigated these kind of inequalities

on submanifolds of various Riemannian manifolds such as Hermitian manifolds, contact metric
manifolds and Riemannian product manifolds cf. [1, 2, 12, 13, 18, 20, 24] etc.

On the other hand, the study of real hypersurfaces in complex space forms has been an
attractive topic in differential geometry since this kind of hypersurfaces admits a almost contact
structure induced from the almost complex structure defined on a complex space form. These
properties present us very rich geometric view point. Real hypersurface of complex space forms
are examined by various geometers cf. [3, 10, 14, 15] etc. In [21], Tashiro and Tachibana proved
that there do not exist any totally umbilical real hypersurface of non flat complex space and
therefore the authors introduced the notion of totally n-umbilical real hypersurface as follows:

A real hypersurface of a complex space form is said to be n-umbilical if the shape operator
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Ap satisfies the following relation:
AnX =aX +bn(X)¢ (1)

for any tangent vector field X on M and some functions a and b. Here £ is known as the structure
vector field on tangent space of real hypersurface.

Later, totally n-umbilical real hypersurfaces of a complex projective space and a complex
hyperbolic space are determined by Takagi [22] and Montiel [19]. Totally n-umbilical real hypersur-
faces and ruled real hypersurfaces of a complex space form by the help of holomorphic distribution
are investigated by Kon in [16].

Motivated by these facts, we study the Riemannian curvature invariants for totally 7-
umbilical real hypersurfaces of a complex space form and we obtain some relations for these
hypersurfaces. With the help of these relations, we get some special characterizations for these

hypersurfaces of 6-dimensional complex space forms.

2. Preliminaries
Let M be an m-dimensional Riemannian manifold equipped with a Riemannian metric g and II

be a plane section spanned by linearly independent vector fields X and Y on M. The sectional

curvature of II denoted by K (II) and it is defined by [17]

7(R(X,Y)Y,X)
g(X’X)g(Y7Y) _g(X7Y)2

K=K (X,Y)= (2)

where R denotes the Riemannian curvature tensor of M. The manifold (H ,G) is called as a space
form if the value of K is constant for any tangent plane I at every point p € M. A space form of

constant curvature ¢ is generally denoted by M (¢) and the following equation holds
~ C . —
R(X,Y)Z=1[3(Y,2)X-g(X,2)Y]. (3)

We note that a space form M (c) becomes
(i) The Euclidean space if ¢ =0.
(ii) The sphere if ¢ > 0.
(iii) The hyperbolic space if ¢ < 0.

Now let (M,5) be a Riemannian manifold and {ei,...,en} be an orthonormal basis for

TPM at a point p € M. The Ricci tensor Ric is defined by

e (X.7) = 7 (Fle X)Y.0)) (4)
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for any X,Y € T,M. For a fixed i€ {1,...,m}, we have
I’{R(ei,ei) = I’{IJC(el) = Zl?(ei,ej). (5)
=i

Furthermore, the scalar curvature 7 at p is defined by

T(p) =2 K(eirey). (6)

i<j

Let II; be a k-plane subsection of TPM and X be a unit vector in II. We choose an

orthonormal basis {e1,...,er} of II; such that e; = X. Then, the Ricci curvature Ricyy, of IIj at

X is defined by

RiCHk(X):I?12+[?13+“'+[?1k. (7)

Here, Ricyy, (X) is called as k-Ricci curvature [6]. Thus for each fixed e;, i€ {1,...,k} we get

k
Ricnk(ei) = Zf((ei,ej). (8)

j#i
The scalar curvature 7 (II) of the k-plane section IIj is given by

F(I) = Y. K(eie)). 9)

1<i<j<k

From (9), we have
1 kK k 12
7 () == > > K(ei,ej) = = > Ricr, (€)- (10)
2355 23

Let (M,g) be an n-dimensional submanifold of an m-dimensional Riemannian manifold

(M ,g) with the induced metric g from §. The Gauss and Weingarten formulas are given

respectively, by
VxY =VxY +h(X,Y) and VxN = ~AyX + V4N (11)

for all X,Y are any two tangent vector fields on the tangent bundle TM and N is the unit normal
vector field on the normal bundle T+M . Here, V, V and V* are, respectively, the Riemannian,

induced Riemannian and induced normal connections in M, M and the normal bundle T*M of

M | respectively, and h is the second fundamental form related to the shape operator A by
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Let R and R denotes the Riemannian curvature tensor fields of M and M respectively.

The equation of Gauss is given by

g(R(X,Y)Z,W) = G(R(X.Y)Z,W)+7(h(X,W),h(Y,Z))

-G (h(X, 2),h(Y,WV)) (13)

forall X,Y,Z, W eTM.
The mean curvature vector H is given by H = %trace(h). The submanifold M is called
totally geodesic in M if h =0, and minimal if H =0. If h(X,Y) = g(X,Y) H for all X,Y e TM,

then M is called totally umbilical [4].

Let {eq,...,e,} be an orthonormal basis of the tangent space T,M and e, (r=n+1,...,m)
belongs to an orthonormal basis {€,41,...,€,} of the normal space Ty M. Then we can write
T ~ 2 n ~,
hi;=g(h(eie;) er) and  [h]"= 37 G(h(eie;) h(eie;)). (14)
irj=1

From (13), we have

m

K(eiej) = K(eiey) + 3 (hizhj; — (hi;)?) (15)

r=n+1

where K;; and I?ij denote the sectional curvature of the plane section spanned by e; and e; at

p in the submanifold M and in the ambient manifold M respectively. Therefore, it follows from

(15) that
27 (p) = 27 (T,M) + n” |H|* - |h]? (16)
where
F(T,M)= Y K(eie;) (17)
1<i<js<n

denotes the scalar curvature of the n-plane section 7, M in the ambient manifold M.

In view of (16), we clearly have
1 ~
r(p) < 0 [HIP +7(T,M). (15)

The equality case of (18) satisfies if and only if M is totally geodesic [11].

An improved case of the inequality (18), the following theorem could be given:

33



Ozlem Deniz and Mehmet Giilbahar / FCMS

Theorem 2.1 [11, Theorem 4.2] For an n-dimensional submanifold M in a Riemannian mani-

fold, at each point p e M, we have

() < " = ) (19)

with equality if and only if p is a totally umbilical point.

Now, we shall recall the Chen-Ricci inequality (20) in the following:

Theorem 2.2 [11, Theorem 6.1] Let M be an n-dimensional submanifold of a Riemannian

manifold. Then, the following statements are true.

(a) For any unit vector X €T,M, it follows that
1 _
Ric (X) < 1 n®|H|? + Ric(r, ary (X)), (20)

where %(TPM) (X) is the n-Ricci curvature of T,M at X e Tle with respect to the

ambient manifold M .
(b) The equality case of (20) is satisfied by a vector X € T,M if and only if

{ h(X,Y) =0, for all Y e T, M orthogonal to X, (21)

2h (X, X) =nH (p),

(c) The equality case of (20) holds for all unit tangent vector X €T,M if and only if either p

is a totally geodesic point or n =2 and p is a totally umbilical point.

3. Real Hypersurfaces of Complex Space Forms

Let M be an almost Hermitian manifold with an almost Hermitian structure (J,9) such that we

have
J? =T (22)

and
(X, JY)=5(X,Y), X,YeTDM. (23)

If J is integrable, that is, the Nijenhuis tensor [J,J] of J vanishes then the almost Hermitian
manifold is called a Hermitian manifold.
Let (M,.J,§) be an almost Hermitian manifold and ¥ be the Riemannian connection of the

Riemannian metric §. The manifold is called a Kaehler manifold [23] if
VJ=0. (24)
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Similar to real space forms, in complex manifolds, we have the notion of complex space
form. A Kaehler manifold M equipped with a Kaehler structure (.J,§,V), which has constant
holomorphic sectional curvatures 4c, is said to be a complex space form M (4c); and its Riemann

curvature tensor R is given by [23]
R(X,Y,Z,W) = c{g(X,MTY,2)-7(X,2)F(Y, W)
+7(X, JZ)g(JY, W) -g(Y,JZ2)G(JX, W)
+29(X, JY)g(JZ, W)} (25)
for any X,Y,Z,W e TM.

Let M (4¢) be a 2n-dimensional complex space form with constant holomorphic sectional

curvature 4¢ and (M,g) be a real (2n — 1)-dimensional hypersurface immersed in M (4¢) with
induced metric g. For a unit vector field £ € TM , we assume that J¢ = N, where N is the unit

normal vector field. In this case, we write for any X € TM that
JX=pX+n(X)N and JN =-¢ (26)
where pX is the tangential part of JX and n is 1- form on T'M satisfying
n(X) =g(JX,N) = g(X, ). (27)

For any real hypersurface M, there exist the following relations for any X € TM:

n(eX) = 0, (28)
e’ (X) = -X+n(X)¢, (29)
¢ = 0 (30)

Furthermore, we have
9 (X, Y) +g(X,0Y) =0
and
9 (X, 0Y) =g (X, Y) =0 (X)n(Y). (32)

From the above equalities, it is clear that the hypersurface M is an almost contact metric manifold

with contact structure (p,&,7,g). For more details, we refer to [16].

Let ¥ be the Riemannian connection of M (4¢) and V be the induced Riemannian connec-

tion on M. Then the Gauss and Weingarten formulas are given respectively by

VxN = -AnxX (34)
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forany X e TM and NeT*M.
Using the fact that (¢, &,7n,¢g) is the contact metric structure in the Gauss and Weingarten

formulas, we have

n(Vx€) =0, Vx{=pAnX (35)
and
(Vxp)Y =n(Y) AnX - g (AnX,Y)E. (36)
Now let us denote the Riemannian curvature tensor field on M by R. From (13) and (25),
we get
R(X,Y)Z = c{g(Y,2) X -g(X,2)Y +g(pY,2) pX
—9(pX, Z) oY =29 (pX,Y) pZ} + g (ANY, Z) AnX
-g(ANX,Z)ANY (37)
and
(VxA)Y = (Vy A) X = c{n(X) oY -n(Y) pX =29 (pX,Y) &} (38)

for any X,Y,Z e TM [16].

4. Main Results
Let M(4c) is an 2n dimensional complex space form and M be a real hypersurface of M (4c).

Let us define a distribution Tp, so called holomorphic distribution on M (4¢), given by
Ty ={X eT,M:n(X)=0}. (39)

If Ty is integrable and its integral manifold is a totally geodesic submanifold, then M is called as
a ruled real hypersurface. A hypersurface M of M (4c) is said to be n-umbilical if the following

relation holds:

AX =aX +bn(X)¢€ (40)

for any vector field X € TM and some functions a and b [21].

Let M be an (2n - 1)-dimensional real hypersurface of a complex space form. Let Tj
denotes the holomorphic distribution on M. Assume that we have g (AX,Y) =ag(X,Y’) for any
X,Y € Ty. Then we can consider an orthonormal basis {ej,es,...,€2,-2,&} such that the shape

operator takes form as follows [16]:

a 0 hl
AN - 0 ‘e a hgn_g (41)
hi ... haopo b
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where h; = g(Ane;, &) for i€ {1,...,2n} and b=g(AnEE).

Now we shall recall the following theorem:

Theorem 4.1 [16, Theorem 3.1] Let M be a real hypersurface of a complex space form M(Zlc)

and Ty be the holomorphic distribution on M . If the following equation holds
g(AX,Y) =ag(X,Y)
for any X,Y €Ty, then M is either totally n-umbilical or it is a locally ruled real hypersurface.

Taking into consideration the above facts, we obtain followings:

Lemma 4.2 Let M be an (2n-1)-dimensional real hypersurface of a complex space form M (4c)

and Ty be the holomorphic distribution on M . Then we have the following equalities:

(i) For any unit vector X in Ty, we have
Ricra (X) = c{2n+3}. (42)
(ii) For the structure vector field £ of M, we have

Ricr, v (€) = 2ne.

Proof Under the assumption, let us choose an orthonormal basis {ej,ea, ..., e2,-2,£} on TM.

Putting X =e; and Y =¢; in (37), we have
= 2
R(ei,ej,ej,ei)=c{1+3g(Jej,ei) } (43)

Furthermore, if write £ instead of e;, then we get

R(ei&&e) = c{1+39(J& e’
= c{1+Sg(N,ei)2}
_— (44)
Using the fact that
Riern (e)= | 5 Bz RlEener.© (45)

and considering the equation (43) and (44), we obtain

Ricr,u (e5) =c{2n+3}. (46)
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Putting X =e; in (46), the proof of (i) statement is completed.

The proof of statement (ii) is straightforward by using the fact

Ricr,n (€) = [ HZ; E(%f;f@)} (47)

Taking into account of the Gauss equation and Lemma 4.2, we obtain the following lemma:

Lemma 4.3 Let M be an (2n+ 1) -dimensional real hypersurface of a complex space form M (4c)

and Ty be the holomorphic distribution on M . Then we have the following equalities:

(i) For any unit vector X in Ty, we have
Ric(X)=(2n+1)c+(2n-3)a* + ab. (48)

(ii) For the structure vector field & of M, we have

Ric(&) =(2n-2)c+ (2n-2)abd. (49)

Lemma 4.4 Let M be an (2n-1)-dimensional real hypersurface of a complex space form M (4c).

Then we have

1 2n-2
H(p):%_l[(;aN)+bN]. (50)

Proof From the definition of mean curvature vector field, we write

2n—-2

10 - 5o (£ ) eneo)]. 1)

i=1

On the other hand, we have

h(ei,e;) = g(Ae,e)N
= ag(e;e) N
= aN (52)
and
h(¢,€) = g(ALEHN
= bN. (53)
If we put (52) and (53) in (51) we obtain the equation (50). O

From (9) and Lemma 4.2, we get the following lemma:
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Lemma 4.5 Let M be an (2n—1) -dimensional real hypersurface of a complex space form M (4c).

Then we have
_ ) 3
T(T,M) =(2n +3n—§ c. (54)
From (16), Lemma 4.4 and Lemma 4.6, we obtain the following lemma:

Lemma 4.6 Let M be an (2n—1) -dimensional real hypersurface of a complex space form M (4c).

Then we have
T(p)=(n-1)2n+2)c+(n-1)(2n-3)a®+2(n-1)ab. (55)

Proposition 4.7 Let M be an (2n — 1)-dimensional real hypersurface of a complexr space form

M(élc), Then the following inequality holds:

[(2n-4)a+b]* > -8c. (56)

Proof Considering Lemma 4.2, Lemma 4.3 and Lemma 4.4 in (20), the proof is straightforward.

O

For the special case n = 3, we have the following corollaries:

Corollary 4.8 Let M be a real hypersurface of a 6-dimensional complex space form M. Then

we have
(2a+b)° > -8c. (57)

The equality case of (57) holds for all p € M if and only if M s totally geodesic and M is the

complex Fuclidean space.

Corollary 4.9 Let M be a real hypersurface of a 6 -dimensional complex space form M. If a = —%

then ¢>0.

Proposition 4.10 Let M be an (2n — 1) -dimensional real hypersurface of a complex space form

M(4c). Then the following inequality holds:
(-2n+2)a*>-b* < (6n+1)ec. (58)

Proof Using Lemma 4.4, Lemma 4.5, Lemma 4.6 in (20), the proof is straightforward. O

For the special case n = 3, we have the following corollaries:
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Corollary 4.11 Let M be a real hypersurface of a 6-dimensional complex space form M. Then

we have the following inequality:

4a® + b% > -19c. (59)

The equality case of this inequality holds if and only if M is a totally geodesic hypersurface of

complex Fuclidean space.
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