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Abstract. In this study, the standard two-sided power (STSP) distribution

is considered with regard to statistical reliability analysis in detail. For this

purpose, along with the reliability and hazard functions of the distribution,
particular reliability indices that are useful in maintenance and replacement

policies are obtained and they are evaluated with their plots. The STSP distri-

bution is classified based on aging according to various cases of its parameters.
Then, we studied the classical and Bayesian estimations of the reliability and

hazard functions. In Bayesian estimation, symmetric and different asymmetric

loss functions are considered. For obtaining the Bayes estimates, Monte Carlo
Markov Chain simulation using the Gibbs algorithm is performed. Various

simulation schemes are performed for comparing the performances of the esti-
mators. Further, the Bayesian predictions of the future observations based on

the observed samples are obtained. A real data example is used to illustrate

the theoretical outcomes.

1. Introduction

Lifetime, survival time or failure time data is encountered in many study fields
such as reliability assesment in engineering, clinical trial studies in medicine, biomed-
ical engineering, social studies and etc. In this purpose; lifetimes of peoples, com-
ponents, patients, industrial robots, animals, plants, cogs, softwares and etc. are
considered with probability distributions. In statistical literature, there are many
different probability distributions for modelling lifetime data. In reliability theory, a
finite upper limit to the lifetime data does not frequently consider and thereby many
lifetime distributions are defined over the range (0,∞) [14]. The commonly used
lifetime distributions are the exponential, Weibull, lognormal, gamma and pareto

2020 Mathematics Subject Classification. 62N05,62F15.
Keywords. Standard two-sided power distribution, statistical reliability analysis, loss functions,

Bayesian estimation, maximum likelihod, MCMC method, predictive Bayes.

ccetinkaya@bingol.edu.tr-Corresponding author; agenc@cu.edu.tr

0000-0001-8010-4261; 0000-0001-7880-5587.

©2021 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

796



ON RELIABILITY CHARACTERISTICS OF THE STSP DISTRIBUTION 797

etc. distributions. On the other hand, in many cases, the lifetime distributions are
needed to consider on a finite range. For example, the pressure, strength, length,
temperature, weight, or voltage of material can take any value on a finite range
(e.g. 150− 250 MPa). Also, the existence of the censoring or truncation causes to
reduce lifetimes on a finite range. In these cases, finite range distributions could
be considered for modelling them. In the reliability studies, distributions on finite
ranges are considered for failure data [1] in various studies. As a special case, finite
ranges can be occur over the range [0, 1] and used for modeling uncertainty about
the probability of success of an experiment. In these cases, beta distributions could
be considered as the most used lifetime distribution. The Beta distributions are
quite useful to modeling many uncertainties since their versatile structure [10]. On
the other hand, the standard two-sided power distribution, denoted by STSP, is
introduced by van Dorp and Kotz [21] and it has the following probability density
function (pdf) and the reliability function

f(x|α, β) =

{
α( xβ )α−1 , 0 < x ≤ β
α( 1−x

1−β )α−1 , β ≤ x < 1
(1)

R(x) = P (X > x) =

{
1− β( xβ )α , 0 < x ≤ β
(1− β)( 1−x

1−β )α , β ≤ x < 1
(2)

while the hazard(failure rate, hazard rate or force of mortality) function is given by

λ(x) =
f(x)

R(x)
=

{
α/
{(

β
x

)α−1 − x
}

, 0 < x ≤ β
α/{1− x} , β ≤ x < 1

(3)

where α > 0 is the shape and 0 < β < 1 is the reflection parameters. The STSP
distribution is proposed as a peaked alternative of beta distribution by Kotz and
van Dorp [12]. Since the STSP distribution is defined on a finite range and has
similar flexibility, the STSP distribution is a beta-like distribution. The parameters
of the distribution determine the shapes of the distribution and similar to the beta
case. For example, the STSP distribution is unimodal in the case of 0 < β <
1 & α > 0 and U shaped for 0 < β < 1 & 0 < α < 1. It has relations with
some other distributions according to its special cases. For instance; the uniform
distribution on (0, 1) for α = 1 and the triangular model for α = 2 are obtained.
In the case of β = 0.5, the STSP distribution is symmetric and the left-skewed
and right-skewed distributions occurs when β > 0.5 and β < 0.5, respectively, for
α > 1. The STSP distribution is intelligibly more flexible than the power function
distribution which is a special case of the distribution in the case of β = 1 (see Fig.
1). In this way, the STSP distribution can be used in reliability and life testing
experiments on [0, 1] range of finite-range datasets. Particularly, when these types
of lifetime data have any threshold point, they are convenient for modelling by a
two-sided distribution. Mance, Barker and Chimka [13] studied some features of
two-sided power distribution (TSP) which is an extension of the STSP distribution
in reliability analysis, firstly. They introduced the reliability and hazard functions of
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Figure 1. Plots of probability denstiy function of the STSP dis-
tribution for various choices of its parameters.

the TSP distribution and presented their plots with usefulness in engineering. Using
analytical estimation procedure, they obtained the TSP parameters and compared
the distribution with the Weibull distribution. Recently, Çetinkaya and Genç [8], [9]
studied the STSP distribution under moments of order statistics and stress-strength
reliability.

As a further study, we consider the STSP distribution under statistical reliability
context. Fundamental reliability indices such as reliability and hazard functions are
given and their plots are interpreted according to changing in parameters of the
distribution. Following, some reliability indices which are useful in maintenance and
replacement policies in engineering are given. Further, we considered the classifying
of the STSP distribution based on notions of aging according to various cases of
its parameters. Otherwise, as a diagnostics test if a data comes from the STSP
distribution, we examined the hazard plot. After these main reliability indices,
we obtanined the classical and Bayesian estimations of the reliability and hazard
functions based on the symmetrical and asymmetrical loss functions. A real dataset
is used to illustrate the outcomes and all estimates are compared. In the last section,
Bayes prediction of a future sample based on current available sample is obtained.

2. Reliability characteristics

The STSP distribution is a two-sided distribution and quite useful on the finite
range. The reliability graph of the STSP distribution is both convex and concave,or
likely S-shaped, depending on different cases of its parameters (see Fig. 2-3). In
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Figure 2. Reliability function plots of the symmetrical STSP dis-
tribution (β = 0.5) for different shape parameters.

symmetrical case, that is if β = 0.5, in the case of α < 1, it is convex for the
smaller values than β and concave for bigger values than β. On the conversely,
in the case of α > 1, it is concave for the smaller values than β and convex for
bigger values than β. If the STSP distribution is not in symmetrical case, that is
if β 6= 0.5, it is convex for small β values and it turns to concave with increasing β
for α > 1. On the other hand, it is convex for large β values and it turns to concave
with decreasing β for α < 1. While α = 1, the STSP distribution has constant
decreasing reliability.
Concave reliability curve imply low failure in early and useful life along with rapid
increase in later life. On the contrary, convex reliability curve imply high failure
in early and useful life along with rapid decrease in later life, the convexity or
concavity of a reliability curve is depend on environmental conditions and genetic
structure of the observations.
In parallel to its reliability function, the STSP distribution has both increasing and

decreasing failure rate based on different cases of its parameters (see Fig. 4). On the
other hand, the hazard function (Eq.3) shows that for any case of parameters the
STSP distribution does not have constant hazard where imminent risk of failure
does not change with time. It is clearly seen that, the failure rate of the STSP
distribution is increasing for α > 1 values and in the form of bathtube curve for
α < 1. Also, λ(t) is not differantiable in the t = β point so there is a cusp as seen
in Fig. 4. Detailed comments about behaviour of the hazard function are given in
the next section.
In statistical reliability studies, there are some indices to compare survival random
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Figure 3. Reliability function plots of the STSP distribution for
different reflection parameters in the case of α > 1(α = 2) on left
and α < 1(α = 0.5) on right.
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Figure 4. Hazard function plots of the symmetrical STSP distri-
bution (β = 0.5) for different shape parameters.

variables. Also, these indices are quite useful for maintenence and replacement
policies.
Firstly, mean time to failure (MTTF) is the length of lifetime a component is
expected to failure. MTTF is one of various methods to assess the reliability of a
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component. The mean time to failure (MTTF) of the STSP distribution can be
obtained by using the pdf (1) of the distribution as in the following.

MTTF = E(X) =
β(α− 1) + 1

α+ 1

Mean residual life time (MRL) at age-t can be considered as another reliability
index. Resiual lifetime at age t is about the question of a component how much
life does it have left in on avarage while the experimental component still alive and
under observation at time t [18]. Mean time to failure for the STSP distribution
can be easily obtained as in the following. Firstly, the conditional density of the X
given X > t is obtained by

f(X|X > t) =


α( xβ )α−1

1−β( tβ )α
, 0 < t < x < β (t < β,CaseI)

α( 1−x
1−β )α−1

1−β( tβ )α
, 0 < t < β < x < 1 (t < β,CaseI)

α
1−x

(
1−x
1−t
)α

, β < t < x < 1(t > β,CaseII)

Then, mean residual lifetime at age-t can be obtained by using

r(t) = E(X − t|X > t) =
∫

(x− t)f(x|x > t)dx and equally

E(X − t|X > t) =
∫ 1
t
R(x)dx

R(t) =
∫ β
t
R1(x)dx+

∫ 1
β
R2(x)dx

R(t) for t ≤ β

E(X − t|X > t) =
∫ 1
t
R(x)dx

R(t) =
∫ 1
t
R2(x)dx

R(t) for t > β.

where R1(x) and R2(x) are the two sides of the reliability function (2), respectively.
Thus, under the STSP distribution mean residual lifetime at age-t is obtained as
in the following

r(t) = E(X − t|X > t) =


[
1+β(α−1)+βt

(
t
β

)α]
(α+1)−1−t

1−β( tβ )α
, t ≤ β

1−t
α+1 , t > β

Together with the hazard plot, MRL plot is a useful and good indication to inves-
tigate the behaviour of lifetime data [15]. The MRL plot which are given in Fig.
5 shows that the MRL of a lifetime data under the STSP distribution brings with
convex curve to concave curve with increasing shape parameter α. Similar to re-
sults which are obtained with hazard plot, for α < 1, MRL is rapidly increasing in
early life as parallel to rapidly decreasing failure. Then, MRL is rapidly decreasing
in wear out stage after a stationary process in useful lifetime on peak. Examples
can be increased for all possible conditions of the parameters α and β.
Further, when a component has already reached given age t, life expectancy at age t
is named as mean life expectancy at age-t and denoted by E(X|X > t) = t+r(t) . If
a component has a lifetime under the STSP distribution, the mean life expectancy
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at age t it is obtained as in the following

E(X|X > t) = t+ r(t) =


[
1+β(α−1)−αβt

(
t
β

)α]
(α+1)−1

1−β( tβ )α
, t ≤ β

αt+1
α+1 , t > β

Similar to MRL plot, the plots of the mean life expectancy at age-t are given in
Fig. 5. The behaviour of the mean life expectancy shows consistents results with
the hazard (Fig. 4) and MRL (Fig. 5) plots.
There is an other index for replacement policies is computation of the probability
of that an A-year-old component reaches age-B. Under the STSP distribution, it
can be obtained easily as in the following

e−
∫B
A
λ(x)dx =


βα−1−Bα
βα−1−Aα , A < B ≤ β

βα−1(1−B)α

(βα−1−Aα)(1−β)α−1 , A ≤ β < B(
1−B
1−A

)α
, β ≤ A < B

Additionally, the expected service life (ESL) of a component under a replacement
policy [3] whereby the component is replaced when it reaches age t is defined as
the expected value of the mixture random variable, namely Z = min{X, t} and
ESL(t) is given as in the following [18].

ESL(t) =

∫ t

0

xf(x)dx+

∫ 1

t

tf(x)dx

For the STSP distribution the expected service life of a component is considered
for two cases as given below

If t ≤ β,

ESL(t) =
∫ t

0
xf1(x)dx+

∫ β
t
tf2(x)dx+

∫ 1

β
tf2(x)dx =

∫ t
0
xf1(x)dx+ tR1(t)

If t > β,

ESL(t) =
∫ β

0
xf1(y)dx+

∫ t
β
xf2(x)dx+

∫ 1

t
tf2(x)dx

ESL(t) =
∫ β

0
xf1(x)dx+

∫ t
β
xf2(x)dx+ tR2(t)

where f1(x) and f2(x) are the two sides of the pdf (1) of the STSP distribution.
Thus, ESL(t) under the STSP distribution is obtained as in the following

ESL(t) =

 t− βt
(
t
β

)α
α+1 , t ≤ β

αβ+(1−β)
[
1−(1−t)

(
1−t
1−β

)α]
α+1 , t > β

The plots of EST(t) for different cases of the parameters are given in Fig. 6 and
Fig. 7. In symmetrical case, that is if β = 0.5, is changing to concave curve with
increasing α. For fixed α > 1, ESL(t) has larger values and similar concavity with
increasing β. On the contrary, for α < 1, ESL(t) has smaller values and similar
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Figure 5. Plots of mean residual lifetime (left) and mean life
expectancy (right) at age-t for the symmetrical STSP distribution

concavity with increasing β.

All these indices which are given and interpreted above is quite useful to evaluate
the behaviour of a lifetime data. In engineering. maintenance and replacement
policies of components and systems have been considered, seriously.

2.1. Classifiying the distribution based on notions of aging. Many lifetime
distributions are considered under particular replacement policies. The mainta-
nence policies are useful to reduce the deficit of the system failures and provide
operational sustainability. In this purpose, the STSP distribution has been evalu-
ated based on its aging. Firstly, the behaviour of the hazard function is considered
and life characteristics for a lifetime data from the STSP distribution is determined
as in the following and summarized in Table 1.

Theorem 1. In the case of x ≤ β, λ(x) is increasing namely it has increasing

failure rate (IFR) for α > 1 and either decreasing on x ≤ min
((

1−α
β1−α

)1/α
, β

)
and

increasing on
(

1−α
β1−α

)1/α ≤ x ≤ β for α < 1.

Proof. If x ≤ β, then

λ
′
(x) = α

[(
β
x

)α 1
β − 1

]−2
1
x2

[(
β
x

)α 1
β (α− 1) + 1

]
Note that;

(
β
x

)α 1
β > 1. So,

the sign of λ
′
(x) depends on the sign of

(
β
x

)α 1
β (α− 1) + 1.
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Figure 6. Plots of expected service life (ESL) for the symmetrical
STSP distribution for various α values
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Table 1. Life characteristics for a lifetime data from the STSP distribution.

Parameters Domain Failure Type

α < 1 x ≤ min
((

1−α
β1−α

)1/α
, β

)
Decreasing Hazard

α < 1
(

1−α
β1−α

)1/α ≤ x ≤ β Increasing Hazard

α ≥ 1 x ≤ β Increasing Hazard
α ≥ 0 x ≥ β Increasing Hazard

For α > 1, λ(x) is increasing on (0, β)(
β
x

)α 1
β (α− 1) + 1 > 0 ⇐⇒ x > (1− α)β1−1/α

For α < 1, λ(x) is either increasing or decreasing on (0, β)(
β
x

)α 1
β (α− 1) + 1 > 0 ⇐⇒ x >

(
1−α
β1−α

)1/α
Thus, λ(x) is increasing on

((
1−α
β1−α

)1/α
, β

)
, if 1 < α+ β.

So if 1− β < α < 1 then λ(x) is increasing on

((
1−α
β1−α

)1/α
, β

)
(
β
t

)α 1
β (α− 1) + 1 < 0 ⇐⇒ t <

(
1−α
β1−α

)1/α
So λ(x) is decreasing on

(
0,
(

1−α
β1−α

)1/α)
, if α+ β < 1

So if α < 1− β < 1 then λ(x) is decreasing on

(
0,
(

1−α
β1−α

)1/α)
. �

Theorem 2. In the case of x > β, λ(x) is an increasing function and namely it
has IFR on (β, 1) for both α > 1 and α < 1.

Proof. λ
′
(x) = α

(1−x)2 . In this way, λ
′
(x) > 0 for all α > 0 values. �

In the hazard function of the STSP distribution for α > 1 values of shape pa-

rameter λ
′

1(β) 6= λ
′

2(β) and it is not differentiable in the x = β point so there is

a cusp as seen in Fig. 4 (Here, λ
′

1(.) and λ
′

2(.) denotes to two side of the hazard
function (3)).

If a lifetime distribution, has a hazard function with non-decreasing avarage, it
is increasing failure rate avarage (IFRA) class of lifetime distribution. This class
could be alternately defined by a condition intuitively related to wear out for each
x ≥ 0 [4]. An IFR limetime distribution is also IFRA. The both proporties of a
lifetime distribution are notions of aging. The IFR, the IFRA or the NBU class of
distributions have a number of benefits. For instance, the distribution or reliability
functions of these distributions can be bounded from lower and upper in terms of
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their mean or quantiles. Many other useful properties of these class of distribu-
tions are elaborated by Barlow and Proschan [1] such as relating to the reliability
of a simple system, a coherent system, a system subject to cumulative shocks and
etc. [19].
An IFRA component Tends to more survive any shorter period and on the con-
trary, less surviving any longer period. The IFRA class contains the exponential
survival probabilities. It contains all IFR survival probabilities. Birnbaum et al. [4]
mentioned that the IFRA class is closed under the formation of coherent systems
and that it is essentially the smallest class containing the exponentials which is so
closed.

Remark 1. A distribution has IFRA (Increasing failure rate avarage) if −(1/x) lnR(x)
is increasing in x ≥ 0. Similarly a distribution has DFRA (Decreasing failure rate
avarage) if −(1/x) lnR(x) is decreasing in x ≥ 0 [1].

Theorem 3. The STSP distribution is an IFRA class of distribution for α > 1 in
the both x ≤ β and x ≥ β cases.

Proof.

ψ1(x) = − lnR1(x)

x
= −

ln
[
1− β( xβ )α

]
x

=
ln
[

1
1−β( xβ )α

]
x

Using the expansion of ln
[

1
1−β( xβ )α

]
as

ψ1(x) =
β( xβ )α +

[
β( xβ )α

]2
2 +

[
β( xβ )α

]3
3 + · · ·

x

Then,

ψ
′

1(x) = (α− 1)β1−αxα−2 +
(2α− 1)β2−2αx2α−1

2
+

(3α− 1)β3−3αx3α−2

3
+ · · ·

It is clearly seen that for α > 1, ψ
′

1(x) > 0. Thus, the STSP distribution is IFRA
in the case of x ≤ β if and only if α > 1.

On the other hand

ψ2(x) =− lnR2(x)

x
= −

ln

[
(1−x)α

(1−β)α−1

]
x

=

ln

[
(1−β)α−1

(1−x)α

]
x

=
ln(1− β)α−1 − ln(1− x)α

x
=

ln(1− β)α−1 + α ln
(

1
1−x

)
x
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Using the expansion of ln
(

1
1−y
)

as

ψ2(x) =
(α− 1) ln(1− β) + α

(
x+ x2

2 + x3

3 + · · ·
)

x

Then

ψ
′

2(x) =
(1− α) ln(1− β)

x2
+
α

2
+

2xα

3
+

3x2α

4
· · ·

In this equation ln(1 − β) > 0 for α > 1 values. Thus, it makes (1−α) ln(1−β)
x2 ≥ 0

and ψ
′

2(x) > 0 �

2.2. Hazard plot. A hazard plot is a simple plot of the points
(
aj , xj

)
, where

aj =
∑j
i=1

1
n−i+1 are called the hazard plot scores [18]. For using a hazard plot

to determine if a data comes from the STSP distribution, note that, cumulative
hazard function of the STSP distribution

H(x) = − ln{R(x)}

{
ln
[
1− β( xβ )α

]−1
, 0 < x ≤ β

ln
[ (1−β)α−1

(1−x)α

]
, β ≤ x < 1

Therefore, if a data comes from the STSP distribution the relationship between
ln(aj) and ln(xj) should be a 450 line similarly to hazard plot for the Weibull dis-
tribution. Many engineers regard hazard plot as a simpler diagnostic test than a
probability plot [18].

3. Classical estimation

In this section, we have obtained the maximum likelihood estimation (MLE)
of the reliability and hazard functions of the STSP distribution. Let us suppose
that x1, x1, . . . , xn is the independent and identical (IID) random samples from
STSP (α, β). Then the likelihood function is given by

L(α, β) = αn
{∏r

i=1 x(i)

∏n
i=r+1(1− x(i))

βr(1− β)n−r

}α−1

where x(r) ≤ β < x(r+1) with x(0) ≡ 0 and x(n+1) ≡ 1.

The maximum likelihood estimators of the parameters are obtained by van Dorp
and Kotz [21], and they are given by

β̂ = X(r̂)

α̂ = − n

logM(r̂)
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where r̂ = arg max{r∈1,2,··· ,n}M(r) and

M(r) =

r−1∏
i=1

X(i)

X(r)

n∏
i=r+1

1−X(i)

1−X(r)

Thus, by using the invariance property of the MLEs, the maximum likelihood esti-
mators of the reliability function and hazard function can be obtained by replacing
the parameters in Eq.(2) and Eq.(3) with their estimates and denoted by R̂ML and

λ̂ML.

4. Bayesian estimation

In this section, we provide Bayes estimates of reliability function R(x) and haz-
ard function λ(x) . Under considering different loss functions, these estimates are
obtained and compared with respect to their expected risks (ER). In Bayesian esti-
mation, squared error loss function (SELF) is the most commonly used loss function
due to it is symmetrical and it provides equal distance to the losses through over-
estimation and underestimation. However, in some situations such as reliability
and hazard estimates overestimation is more considerable than underestimation or
vice-vera [16]. In this purpose, Linex loss function (LLF) defined by Varian [22]
and general entropy loss function (GELF) defined by Calabria and Pulcini [5] are
considered as asymmetric loss functions which are defined as, respectively,

SELF =⇒ L1(θ̂, θ) = (θ̂ − θ)2

LLF =⇒ L2(θ̂, θ) = ep(θ̂−θ) − p(θ̂ − θ)− 1, p 6= 0

GELF =⇒ L3(θ̂, θ) =
(
θ̂
θ

)c − c log
(
θ̂
θ

)
− 1

where p and c reflects the departure from the symmetry, θ̂ represents an estimate
for parameter θ. Thus, Bayes estimates of the parameters under these loss functions
can be obtained from their posterior distributions as in the following;

SELF =⇒ θ̂B1 = E(θ|data)

LLF =⇒ θ̂B2 = − 1
p log{E(e−pθ|data)}

GELF =⇒ θ̂B3 = {E(θ−c|data)}−1/c

Under these loss functions, the Bayes estimators of reliability R(x|α, β) and hazard
λ(x|α, β) functions which are given in Eq.(2) and Eq.(3), respectively, are expressed
as in the following,

R̂B1 =

∫ ∞
0

∫ 1

0

R(data|α, β) π(α, β|data)dβdα (4)

R̂B2 = −1

p
log

{∫ ∞
0

∫ 1

0

e−pR(data|α,β)π(α, β|data)dβdα

}
(5)
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R̂B3 =

{∫ ∞
0

∫ 1

0

R(data|α, β)−cπ(α, β|data)dβdα

}−1/c

(6)

where π(α, β|data) is posterior distribution of the parameters. Estimators of the

λ(t), denoted by λ̂B1, λ̂B2 and λ̂B3 , can be obtained by changing R(data|α, β)
with Eq.(3), similarly.
However, the form of the STSP distribution given in (1) is not proper for devel-
oping Bayesian models. Since the its support depends on the reflection parameter,
posterior distributions of α and β, namely π(α, β|data) can not be obtained. Also,
estimators given in (4),(5) and (6) can not be expressed in closed form and hence
it can not be evaluated analytically. This fact was previously pointed out for the
triangular distribution which is special form of the STSP distribution (α = 2 case)
by Ho et al. [11]. To overcome this adversity and obtain a Bayesian inference for
the STSP distribution, Çetinkaya and Genç [9] proposed a hierarchical model con-
struction. This model provides conditional distributions of parameters to build a
Markov Chain Monte Carlo (MCMC) algorithm using a Gibbs sampler as given in
the following.
Çetinkaya and Genç [9] developed marginal densities by introducing an auxiliary
or talent variable as in the following.
Let V be a random variable with parameter α > 1. Suppose that V has the pdf

fV (v;α) = α
[
1− (1− v)1/(α−1)

]
, 0 < v < 1.

Further, let the conditional distribution of X given V = v be the uniform distribu-
tion represented by

U
[
β(1− v)1/(α−1), 1− (1− β)(1− v)1/(α−1)

]
.

Then the marginal distribution of X has the STSP distribution with pdf given
in (1). Thus, this hierarchical model will simplify the computational procedures
for Bayesian calculations. In order to implement a Gibbs sampler, Çetinkaya and
Genç [9] are obtained the conditional distributions of α, β and v as in the following

f(v|α, β, x) ∝ f(v|α)f(x|α, β, v)

∝ I
(
max

{
1−

(
x

β

)α−1

, 1−
(

1− x
1− β

)α−1}
< v < 1

)
f(β|α, v, x) ∝ π(β)f(x|β, v, α)

∝ π(β)I

(
1− 1− x

(1− v)1/(α−1)
< β <

x

(1− v)1/(α−1)

)
f(α|v, β, x) ∝ π(α)f(v|α)f(x|β, v, α)

∝ π(α)I

(
1 < α < min

{
ln(1− v)

ln(x
<

β )
+ 1,

ln(1− v)

ln( 1−x>
1−β )

+ 1

})
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where I(.) denotes indicator function, x< denotes observations below β and x> ob-
servations above β, π(α) and π(β) denotes prior distributions for the parameters.
Thus, MCMC samples using Gibbs algorithm can be obtained by using the follow-
ing steps;

Step 1: Assign initial α(0) and β(0) values for α and β.
Step 2: Set t=1.

Step 3: Given α(t−1) and β(t−1) and {x1, x2, · · · , xn} generate {v1, v2, · · · , vn}
using Eq.(4).
Step 4: Considering uniform prior on [0, 1] for β, given α(t−1), {x1, x2, · · · , xn}
and {v1, v2, · · · , vn}, generate β(t) using

I

(
max

{
1− 1− xi

(1− vi)1/(α(t−1)−1)
, 0

}
< β < min

{
xi

(1− vi)1/(α(t−1)−1)
, 1

})
Step 5: Considering uniform prior on [1, c] for α and choosing c = 100 generate αt

from the pdf
[
(n+ 1)/(bn+1 − 1)]αn using inverse transformation method, where

b = min

{
1 +

ln(1− vi)
ln(

x<i
β(t) )

, 1 +
ln(1− vi)
ln(

1−x>i
1−β(t) )

, c

}
Step 6: Using Eq.(2) and Eq.(3), compute R

(t)
B and λ

(t)
B at (α(t), β(t)).

Step 7: Set t = t+ 1.

Step 8: Repeat steps 2 − 7, M times and obtain posterior samples (R
(t)
B : t =

1, 2, · · · ,M) and (λ
(t)
B : t = 1, 2, · · · ,M).

Finally, the posterior mean under mean sqaured error, linex loss and general en-

tropy loss functions, say R̂B1, R̂B2, R̂B3 and λ̂B1, λ̂B2, λ̂B3, can be obtained as
follows;

R̂B1 =
1

M

M∑
t=1

R
(t)
B , R̂B2 = −1

p
ln

{
1

M

M∑
t=1

e−pR
(t)
B

}

R̂B3 =

{
1

M

M∑
t=1

(R
(t)
B )−c

}−1/c

(7)

λ̂B1, λ̂B2, λ̂B3 are obtained similarly.

5. Simulation Studies

In this section, performances of the maximum likelihood and Bayes estimators
under different loss functions are compared. According to various fixed point (t)
and sample sizes, avarage estimates and corresponding expected risks (ER) of R(t)
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are obtained and reported in Tables 2 and 3. Similar results are also obtained for
λ(t) and reported in Table 4 and 5.

The expected risks of estimates under all considered loss functions (SELF, LLF

and GELF), when θ is estimated by θ̂, can be obtained by using the following equa-
tion,

ER(θ̂) =
1

M

M∑
i=1

(θ̂i − θ)2,

where

θ̂ = E(θ|data), for SELF

θ̂ = −1

p
log{E(e−pθ|data), for LLF

θ̂ = {E(θ−c|data)}−1/c, for GELF

respectively. Choosen arbitrary values of the parameters (α, β) are taken as (2.8, 0.8)
and (1.5, 0.5), respectively. The Bayes point estimates are obtained under SELF,
LLF(p = −0.5, 0.5, 1) and GELF(c = −0.5, 0.5, 1) loss functions. We generate 2000
samples of size n (small sample size n = 10, moderate sample sizes n = 20, 30 and
large sample sizes n = 50, 100). For Bayesian estimation, we run the Gibbs sampler
to generate a Markov chain with 3500 observations using the given algorithm in
Section 4. As burn-in period, we discard the first 500 values and take every third
variate as a independent and identically distributed observation in thinning pro-
cedure. Thus, a sample of 1000 resulted which is used to calculate the posterior
estimates. Then, the simulation is performed via MCMC for 2000 replicates. We
report all the results of this simulation scheme in Table 2, 3 for reliability esti-
mates. We observed that all the estimates are close to the actual values of R(t). As
expected, the ERs of all estimators decrease as sample size increases in all consid-
ered cases. In all cases (t ≤ β, t > β), maximum likelihood estimates tend to give
overestimates. Being underestimating or overestimating is not only depend on loss
parameters, it is also related to relation between t and β. Bayes estimates under
squared error R̂B1 and Linex loss functions R̂B2 gives under estimates for t ≤ β
and over estimates for t > β. Bayes estimates under general entropy loss function
R̂B3 gives under estimates for t ≤ β. On the other hand, for t > β it gives under
estimate for c = 0.5 and c = 1, overestimates for c = −0.5. Expected risks show
that MLE and Bayes estimates under SELF have larger risks. Bayesian estimates
under LLF and GELF gives better results in terms of expected risks. Especially,
estimates give smallest risks for loss parameters c = 0.5 and p = 0.5. While loss
parameter values converges to 1, risks are getting larger.
Furthermore, similar simulation scenario are applied for λ(t) and reported in Table
4, 5. However, Linex loss function is not considered for hazard estimates, only
SELF and GELF are used in Bayesian estimates in addition to MLE. Since the
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Table 2. Avarage estimates and corresponding mean squared er-
rors/risks of R(t) for different choise of n and t when α = 2.8 and
β = 0.8 where actual R(0.2) = 0.984, R(0.5) = 0.785 and R(0.9) =
0.029.

t n R̂ML R̂B1

R̂B2(Linex) R̂B3(GELF )

p = −0.5 p = 0.5 p = 1 c = −0.5 c = 0.5 c = 1

0.2

10 0.983448 0.970658 0.970911 0.970400 0.970138 0.970381 0.969809 0.969514

0.000381 0.000818 0.000801 0.000836 0.000853 0.000837 0.000877 0.000898

20 0.982662 0.975747 0.975863 0.975631 0.975512 0.975623 0.975369 0.975239

0.000239 0.000437 0.000431 0.000443 0.000449 0.000444 0.000458 0.000465

30 0.983106 0.978792 0.978854 0.978730 0.978668 0.978728 0.978596 0.978529

0.000138 0.000209 0.000207 0.000212 0.000214 0.000212 0.000216 0.000219

50 0.983434 0.980887 0.980916 0.980858 0.980828 0.980857 0.980796 0.980766

0.000083 0.000111 0.000110 0.000111 0.000112 0.000111 0.000113 0.000113

100 0.983348 0.982076 0.982088 0.982065 0.982053 0.982064 0.982040 0.982028

0.000041 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050

0.5

10 0.805895 0.769507 0.772007 0.766961 0.764367 0.765790 0.757843 0.753595

0.011199 0.011945 0.011693 0.012211 0.012491 0.012449 0.013632 0.014321

20 0.795528 0.778710 0.779972 0.777433 0.776138 0.776950 0.773281 0.771367

0.005247 0.005728 0.005655 0.005804 0.005886 0.005864 0.006173 0.006348

30 0.793182 0.783086 0.783890 0.782275 0.781457 0.782004 0.779787 0.778650

0.003232 0.003476 0.003450 0.003503 0.003532 0.003523 0.003631 0.003691

50 0.790239 0.785236 0.785692 0.784777 0.784316 0.784638 0.783426 0.782812

0.001903 0.001997 0.001990 0.002004 0.002012 0.002010 0.002038 0.002054

100 0.787610 0.785392 0.785609 0.785173 0.784955 0.785111 0.784545 0.784261

0.000964 0.001019 0.001017 0.001021 0.001023 0.001022 0.001029 0.001033

0.9

10 0.036569 0.029611 0.029755 0.029468 0.029327 0.025943 0.018368 0.014756

0.002212 0.000556 0.000565 0.000547 0.000538 0.000495 0.000457 0.000478

20 0.033779 0.034082 0.034217 0.033949 0.033817 0.031104 0.025323 0.022586

0.001096 0.000477 0.000484 0.000470 0.000463 0.000408 0.000330 0.000318

30 0.031665 0.034080 0.034189 0.033973 0.033866 0.031723 0.027279 0.025209

0.000628 0.000401 0.000406 0.000396 0.000391 0.000347 0.000278 0.000262

50 0.030256 0.033022 0.033088 0.032956 0.032891 0.031505 0.028678 0.027359

0.000242 0.000236 0.000239 0.000234 0.000232 0.000209 0.000175 0.000166

100 0.028860 0.030302 0.030325 0.030278 0.030255 0.029645 0.028380 0.027770

0.000082 0.000090 0.000090 0.000090 0.000089 0.000085 0.000079 0.000077

*First rows in each coloumn represents the avarage estimates and the second rows represents the
expected risks of the estimates.
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Table 3. Avarage estimates and corresponding mean squared er-
rors/risks of R(t) for different choise of n and t when α = 1.5 and
β = 0.5 where actual R(0.2) = 0.874, R(0.5) = 0.500 and R(0.9) =
0.045.

t n R̂ML R̂B1

R̂B2(Linex) R̂B3(GELF )

p = −0.5 p = 0.5 p = 1 c = −0.5 c = 0.5 c = 1

0.2

10 0.874192 0.880441 0.881192 0.879683 0.878918 0.879536 0.877680 0.876729

0.008142 0.003009 0.002987 0.003033 0.003059 0.003050 0.003142 0.003195

20 0.873982 0.872569 0.873088 0.872047 0.871521 0.871956 0.870711 0.870078

0.004265 0.001863 0.001853 0.001873 0.001885 0.001878 0.001912 0.001930

30 0.874393 0.869598 0.869997 0.869197 0.868793 0.869128 0.868176 0.867693

0.002691 0.001442 0.001434 0.001450 0.001459 0.001453 0.001478 0.001491

50 0.875334 0.868961 0.869237 0.868683 0.868404 0.868636 0.867980 0.867649

0.001292 0.000944 0.000939 0.000950 0.000955 0.000951 0.000966 0.000975

100 0.874437 0.869591 0.869733 0.869449 0.869306 0.869425 0.869091 0.868923

0.000609 0.000606 0.000604 0.000609 0.000612 0.000610 0.000617 0.000621

0.5

10 0.501461 0.499542 0.502393 0.496691 0.493841 0.493212 0.479664 0.472407

0.024020 0.011413 0.011422 0.011418 0.011438 0.011813 0.013025 0.013872

20 0.498163 0.497941 0.499603 0.496279 0.494617 0.494423 0.487152 0.483395

0.011601 0.005787 0.005783 0.005797 0.005812 0.005910 0.006251 0.006474

30 0.502838 0.502116 0.503334 0.500899 0.499681 0.499604 0.494469 0.491846

0.007896 0.00430 0.004307 0.004296 0.004295 0.004341 0.004465 0.004550

50 0.497907 0.498000 0.498795 0.497205 0.496411 0.496369 0.493065 0.491393

0.004915 0.003033 0.003030 0.003036 0.003041 0.003061 0.003133 0.003178

100 0.499269 0.499646 0.500082 0.499209 0.498772 0.498762 0.496985 0.496091

0.002365 0.001661 0.001661 0.001662 0.001662 0.001667 0.001684 0.001694

0.9

10 0.042168 0.039468 0.039622 0.039315 0.039163 0.035352 0.026263 0.021649

0.001781 0.000528 0.000530 0.000527 0.000525 0.000587 0.000807 0.000959

20 0.045160 0.046053 0.046180 0.045926 0.045800 0.043146 0.036971 0.033781

0.001053 0.000394 0.000395 0.000392 0.000390 0.000400 0.000459 0.000513

30 0.044577 0.047299 0.047403 0.047196 0.047092 0.045040 0.040359 0.037972

0.000727 0.000357 0.000359 0.000356 0.000354 0.000354 0.000373 0.000396

50 0.044447 0.048333 0.048408 0.048257 0.048182 0.046789 0.043676 0.042119

0.000379 0.000279 0.000280 0.000278 0.000277 0.000270 0.000264 0.000268

100 0.043858 0.046646 0.046685 0.046607 0.046568 0.045844 0.044252 0.043462

0.000155 0.000165 0.000166 0.000165 0.000164 0.000161 0.000156 0.000156

*First rows in each coloumn represents the avarage estimates and the second rows represents the
expected risks of the estimates.
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Table 4. Avarage estimates and corresponding mean squared er-
rors/risks of λ(t) for different choise of n and t when α = 2.8 and
β = 0.8 where actual λ(0.2) = 0.235, λ(0.5) = 1.530 and λ(0.9) =
28.

t n λ̂ML λ̂B1

λ̂B2

c = −0.5 c = 0.5 c = 1

0.2

10 0.212659 0.313104 0.268433 0.179495 0.139538

0.040227 0.059365 0.050593 0.042289 0.041897

20 0.227699 0.279875 0.255613 0.206944 0.183191

0.024096 0.032751 0.029739 0.026911 0.026982

30 0.228798 0.260926 0.244609 0.211838 0.195616

0.015070 0.017770 0.016607 0.015801 0.016135

50 0.228658 0.247889 0.238138 0.218507 0.208703

0.009430 0.010604 0.010247 0.010088 0.010284

100 0.232933 0.242591 0.237783 0.228127 0.223305

0.004708 0.005225 0.005131 0.005085 0.005132

0.5

10 1.527713 1.759105 1.692216 1.562116 1.497889

0.645253 0.692297 0.626148 0.542050 0.522746

20 1.523361 1.615436 1.587562 1.533140 1.506383

0.227766 0.237356 0.224401 0.206981 0.202233

30 1.508165 1.558570 1.542440 1.510611 1.494848

0.103195 0.108809 0.105687 0.102085 0.101525

50 1.515442 1.535820 1.527515 1.510964 1.502708

0.056820 0.059281 0.058701 0.058129 0.058130

100 1.526108 1.534501 1.530836 1.523501 1.519830

0.024845 0.025726 0.025636 0.025553 0.025559

0.9

10 33.641810 34.949716 34.095302 32.380401 31.522558

216.803883 232.935939 212.975812 177.496690 161.996142

20 30.473946 30.805958 30.405633 29.597499 29.190319

71.428341 71.478819 68.002931 62.007851 59.498323

30 29.760384 29.848291 29.587420 29.059841 28.793272

38.963410 40.020913 38.694668 36.473211 35.583057

50 28.950512 28.947054 28.798466 28.498208 28.346406

20.345468 21.397870 20.993493 20.333355 20.080180

100 28.537238 28.599188 28.531815 28.396683 28.328937

8.511153 9.343395 9.232614 9.041654 8.961717

*First rows in each coloumn represents the avarage estimates and the second rows represents the
expected risks of the estimates.
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Table 5. Avarage estimates and corresponding mean squared er-
rors/risks of λ(t) for different choise of n and t when α = 1.5 and
β = 0.5 where actual λ(0.2) = 1.086, λ(0.5) = 3 and λ(0.9) = 15.

t n λ̂ML λ̂B1

λ̂B2

c = −0.5 c = 0.5 c = 1

0.2

10 1.169160 1.138610 1.083326 0.969943 0.911189

0.578881 0.282840 0.264464 0.256365 0.267456

20 1.126438 1.130396 1.101100 1.042949 1.013914

0.241296 0.119590 0.114397 0.110948 0.112758

30 1.115528 1.136663 1.116351 1.076537 1.056966

0.149128 0.083364 0.079938 0.076227 0.075905

50 1.100535 1.127605 1.114830 1.089977 1.077876

0.072287 0.047207 0.045266 0.042646 0.041937

100 1.095927 1.119173 1.112864 1.100583 1.094604

0.033968 0.029776 0.028847 0.027331 0.026735

0.5

10 3.163512 3.274372 3.189939 3.029371 2.953750

2.061529 1.592072 1.445463 1.206419 1.113028

20 2.955649 2.951840 2.909191 2.826440 2.786523

0.805802 0.538925 0.521216 0.495661 0.487587

30 2.891219 2.847796 2.817406 2.757840 2.728774

0.535141 0.375209 0.373863 0.375581 0.378551

50 2.873531 2.806055 2.786332 2.747164 2.727771

0.324230 0.256955 0.261111 0.271222 0.277145

100 2.866385 2.799225 2.787858 2.765075 2.753677

0.175262 0.165486 0.169514 0.178249 0.182950

0.9

10 19.682280 20.553253 20.138921 19.332664 18.942773

74.221823 77.820319 70.489912 57.178282 51.195827

20 17.047429 17.258969 17.069952 16.697927 16.515474

20.687151 19.057091 17.735260 15.325558 14.236774

30 16.403576 16.389651 16.262977 16.011816 15.887572

12.517064 11.323384 10.766275 9.747012 9.284522

50 15.779786 15.640292 15.564618 15.413565 15.338271

5.990385 5.627023 5.470833 5.190874 5.067049

100 15.459294 15.358812 15.321466 15.246624 15.209147

2.569578 2.791105 2.754111 2.688752 2.660413

*First rows in each coloumn represents the avarage estimates and the second rows represents the
expected risks of the estimates.
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second case (t > β) of the hazard function which is given in Eq. (3) is depend on
only shape (α) parameter and dividing it to (1 − t) bring along large deviations
even if small changes on α, the ERs under LLF do not provide consistent results.
Also, many authors implied that LLF is not as appropriate for estimation of scale
parameter as it is for location parameter and GELF is proposed as a suitable al-
ternative to the modified LINEX loss function [2], [17]. Table 4, 5 show that the
Bayes estimates under GELF has smaller expected risks and loss parameter c = 0.5
gives smallest risks for actual λ > 1 values of hazard function. On the contrary,
MLE estimates has smaller risks while actual values converges to 0. In this case,
ML gives better results than Bayes estimates in terms of ER. Similar to reliability
estimates, the ERs of all hazard estimators decrease as sample size increases as
expected.

6. Real Data Studies

In this section, a real data analysis is used to illustrate the proposed methods.
In this purpose, breaking strengths of 1mm length single carbon fibers data, from
Crowder [7], is used. We scaled the data by subtracting 2 and multiplying 5,
respectively. Thus, the data lie in the interval (0, 1). The sample size of the data
is 58. The scaled data is given in Table 6.

Table 6. Re-scaled breaking strengths of 1mm length single car-
bon fibers data,(n = 58).

0.0494 0.3570 0.5356 0.3362 0.5110 0.2656
0.2710 0.4222 0.6718 0.3824 0.5664 0.3456
0.3566 0.4914 0.1816 0.4432 0.7368 0.4126
0.4164 0.5272 0.3162 0.5084 0.2490 0.4652
0.4804 0.6268 0.3792 0.5476 0.3454 0.5264
0.5268 0.1684 0.4282 0.7142 0.4100 0.6086
0.6198 0.3144 0.5038 0.2252 0.4524 0.7996
0.8120 0,3572 0.5396 0.3452 0.5228 0.8120
0.1280 0.4236 0.6946 0.3928 0.5848
0.2766 0.4932 0.2198 0.4502 0.7442

We fit the STSP distribution to this dataset and we used maximum likelihood
and Bayesian estimation methods. Estimations of the parameters α and β are
reported in Table 7. Then, we applied to data Kolmogorov-Simirnov test to evaluate
goodness of fit and test statistics are reported in Table 8, respectively. For sample
size n = 58 and significance level 0, 05, the critical Kolmogorov-Simirnov test value
is D58,0.05 = 0, 1783. Thus, the null hypothesis that the data come from the STSP
distribution cannot reject. Also, the QQ-plot and hazard plot, Fig. 8, support this
observation.
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Table 7. ML and Bayes estimates of the parameters for the real
data set.

MLE SELF
LLF GELF

p = −0.5 p = 0.5 p = 1 c = −0.5 c = 0.5 c = 1

α 2.6704 2.6734 2.7060 2.6417 2.6111 2.6614 2.6373 2.6253
β 0.4164 0.4092 0.4097 0.4087 0.4083 0.4080 0.4056 0.4044

Estimates of reliability R(t) and failure rate λ(t) under maximum likelihood and
Bayes method are obtained for different choise of t, say t = 0.2, 0.4, 0.6, 0.8, and
reported in Table 9 and Table 10, respectively. We perform the algorithm which
is given above for Bayes estimations with 100 000 iteration. We start the iteration
with the maximum likelihood estimates of parameters and with these good starting
values we prefer not to use burn-in operation. Also, we take every tenth variate as
a independent and identically distributed observation in thinning procedure. Thus,
a sample of 10 000 resulted which is used to calculate the posterior estimates. We
used R program [20] to obtain the simulation results. Convergence of the simulated
Markov chains is assessed by graphical methods.
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Figure 8. Q-Q and the hazard plots of the real dataset.

In this purpose, trace plots (Fig. 9, Fig. 10) which is a plot of the iteration

number, t, against the value of the R
(t)
B and λ

(t)
B at each iteration. Also, density

plots of the posterior distribution of the R and λ are drawn at the same time. It is
observed that Markov chains fluctuates around their center with similar variation.
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Table 8. Kolmogorov-Simirnov test statistics for the real data
set. Kolmogorov-Simirnov critical test value D58,0.05 = 0, 1783.

MLE SELF
LLF GELF

p = −0.5 p = 0.5 p = 1 c = −0.5 c = 0.5 c = 1

0.1207 0.0862 0.1552 0.1034 0.0690 0.1379 0.1207 0.1379

Table 9. Reliability estimates of the real data set under various t values.

t R̂ML R̂B1
R̂B2 R̂B3

p = −0.5 p = 0.5 p = 1 c = −0.5 c = 0.5 c = 1

0.2 0.9412 0.9363 0.9364 0.9362 0.9361 0.9362 0.9360 0.9359
0.4 0.6260 0.6137 0.6146 0.6129 0.6120 0.6123 0.6093 0.6078
0.6 0.2128 0.2142 0.2146 0.2139 0.2135 0.2125 0.2091 0.2074
0.8 0.0334 0.0354 0.0355 0.0354 0.0353 0.0341 0.0314 0.0300

The density plots seems in a symmetrical and unimodal shape. Morever, autocor-
relation of the chains are evaluated and their plots are given in Fig. 11. The ACF
plots show that thinning is succesful. Also, we computed the sample lag-t auto-
correlation function by autocorr command in library coda [6] in R. For reliability
estimates, the lag-10 autocorrelation is 0.02165095 and the lag-50 autocorrelation
is -0.01679917. In addition to this, the lag-10 autocorrelation is 0.09367374 and the
lag-50 autocorrelation is -0.02822016 for hazard estimates. Thus, we can say that
convergence of the Markov chain is satisfactory.
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Figure 9. Trace plot of reliability estimates on the left and the
density plot of the posterior distribution of reliability on the right.
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Figure 10. Trace plot of hazard estimates on the left and the
density plot of the posterior distribution of hazard on the right.
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7. Bayesian Prediction

In this section, we studied Bayesian prediction of future ordered sample based on
informative of current observed data. Let y1:m, y2:m, · · · , ym:m be a future ordered
observation independent of the given informative sample data x1:n, x2:n, · · · , xn:n.
Then, Bayesian predictive density of the sth{s = 1, 2, · · · ,m} ordered future sample
can be obtained by using

gs:m(y|x) =

∫ ∞
0

∫ 1

0

fs:m(y|α, β)π(α, β|x)dβdα
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Table 10. Failure rate estimates of the real data set under various
t values.

t λ̂ML λ̂B1
λ̂B2 λ̂B3

p = −0.5 p = 0.5 p = 1 c = −0.5 c = 0.5 c = 1

0.2 0.8334 0.8852 0.8964 0.8745 0.8644 0.8732 0.8493 0.8374
0.4 3.9891 3.9164 4.0665 3.7712 3.6333 3.8779 3.7989 3.7584
0.6 6.6760 6.6874 6.8823 6.5091 6.3441 6.6597 6.6044 6.5767
0.8 13.3521 13.3790 14.2480 12.6505 12.0244 13.3201 13.2022 13.1433

where π(α, β|x) denotes the posterior density of the parameters and fs:m(y|α, β)
denotes the pdf of the sth order statistic in the future sample as given in the
following

fs:m(y|α, β) =
m!

(s− 1)!(m− s)!
[
F (y|α, β)

]s−1[
1− F (y|α, β)

]m−s
f(y|α, β)

here f(.|α, β) denotes the pdf which is given in Eq. (1) and F (.|α, β) denotes the
distribution function of the STSP distribution. Çetinkaya and Genç [8] studied the
STSP distribution in detailed in terms of its order statistics. The density of the sth

order statistics is given as

fs:m(y) = αCm,s

{
β(1−α)s∑m−s

i=0 (−1)i
(
m−s
i

)
βi(1−α)xα(s+i)−1 , 0 < y ≤ β

(1− β)ϕ1
∑s−1
i=0 (−1)i

(
r−1
i

)
(1− β)i(1−α)(1− x)ϕ2 , β ≤ y < 1

where Cm,s = m!
(s−1)!(m−s)! , ϕ1 = (1−α)(m− s+ 1) and ϕ2 = α(i+m− s+ 1)− 1.

If we denote the predictive density of ys:m as ĝs:m(y|x), it can be obtained by using

ĝs:m(y|x) =

∫ ∞
0

∫ 1

0

fs:m(y|α, β)π(α, β|x)dβdα (8)

However, it is be noted that Eq. (8) cannot be expressed in closed form and
hence it cannot be evaluated analytically. Thus, we propose a simulation consistent
estimator of ĝs:m(y|x), which can be obtained by using Gibbs sampling MCMC
method described in Section 4. Let suppose that MCMC sample {(αi, βi); i =
1, 2, · · · ,M} obtained from π(α, β|x) using the algorithm given in Section 4, then
a simulation consistent estimator of ĝs:m(y|x) can be obtained as

ĝs:m(y|x) =
1

M

M∑
i=1

fs:m(y|αi, βi)

Further, a simulation consistent estimator of predictive distribution of sth order
statistics, say Ĝs:m(y|x), can be obtained as

Ĝs:m(y|x) =
1

M

M∑
i=1

Fs:m(y|αi, βi)
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where Fs:m(y|α, β) denotes the distribution function of the sth order statistics, i.e.

Fs:m(y|α, β) = Cm,s
∫ y

0
[F (z|α, β)]s−1[1− F (z|α, β)]m−sf(z|α, β)dz

= Cm,s


B(β( yβ )α; s,m− s+ 1) , 0 < y ≤ β

B(s,m− s+ 1)−B
(

(1− β)( 1−y
1−β )α,m− s+ 1, s

)
, β ≤ y < 1

here B(a, b) denotes the beta function and B(·, a, b) denotes the incomplete beta
function. It should be note that, ĝs:m(y|x) is not a point prediction, it is a predictive
density. The point prediction for the future observations under squared error loss
function can be obtained as in the following

ŶS =

∫ 1

0

yĝs:m(y|x) =
1

M

M∑
i=1

∫ 1

0

yfs:m(y|αi, βi)dy =
1

M

M∑
i=1

µs:m

where µs:m is the first moment of sth order statistics of the STSP distribution and
it was given by Çetinkaya and Genç [8] as in the following

µs:m = Cm,s

[
β1−1/αB(β; 1/α+ s,m− s+ 1) +B(1− β;m− s+ 1, s)

−(1− β)1−1/αB(1− β; 1/α+m− s+ 1, s)

]
Finally, point estimation under SELF, denoted by ŶS , can be obtained as in the
following;

ŶS =
1

M

M∑
i=1

Cm,s

[
β

1−1/αi
i B(βi; 1/αi + s,m− s+ 1) +B(1− βi;m− s+ 1, s)

−(1− βi)1−1/αiB(1− βi; 1/αi +m− s+ 1, s)

]
(9)

Further, point prediction under general entropy loss function, denoted by ŶG can
be obtained as

ŶG =

[ ∫ 1

0

y−cĝs:m(y|x)

]−1/c

=

[
1

M

M∑
i=1

∫ 1

0

y−cfs:m(y|αi, βi)dy
]−1/c

Then, solution of this integral is obtained as∫ 1

0

y−cfs:m(y|α, β)dy =

∫ β

0

y−c
[
β

(
y

β

)α]s−1[
1− β

(
y

β

)α]m−s
α

(
y

β

)α−1

dy

+

∫ 1

β

y−c
[
1− (1− β)

(
1− y
1− β

)α]s−1[
(1− β)

(
1− y
1− β

)α]m−s
α

(
1− y
1− β

)α−1

dy
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In the first integral, by change of variable U = β

(
y
β

)α
and binomial expansion for[

1− (1− β)

(
1−y
1−β

)α]s−1

and 1− y = v transformation in the second integral, the

solution can be obtained as∫ 1

0

y−cfs:m(y|α, β)dy = βc(1/α−1)B(β; s− c/α,m− s+ 1) + α

s−1∑
j=0

(
s− 1

j

)
(−1)j(1− β)(1−α)(m−s+j+1)B(1− β;α(m− s+ j + 1, 1− c))

where c < 1. Thus; ŶG can be obtained as

ŶG =

[
1

M

M∑
i=1

Cm,s

(
β
c(1/αi−1)
i B(βi; s− c/αi,m− s+ 1) + αi

s−1∑
j=0

(
s− 1

j

)

(−1)j(1− βi)(1−αi)(m−s+j+1)B(1− βi;αi(m− s+ j + 1), 1− c)
)]−1/c

(10)

Moreover, we can construct a 100γ% predictive interval for ys:m. A symmetrical
predictive interval for future sample can be obtained by solving the following non-
linear equations for the lower bound L and upper bound U,

1 + γ

2
= P (Ys:m > L|data) = 1− F ∗s:m(L|data) =⇒ F ∗s:m(L|data) =

1− γ
2

1− γ
2

= P (Ys:m > U |data) = 1− F ∗s:m(U |data) =⇒ F ∗s:m(U |data) =
1 + γ

2

(11)

It is not possible to obtain the solutions analytically and we need to apply suitable
numerical techniques for solving these nonlinear equations.

Example. Under the future prediction framework, the prediction values of the
first two and last two observations of future sample,y1:m,y2:m,ym−1:m and ym:m,
of size m = 5, 10, 15, 20 based on real data given in Sec. 6 are obtained with
their constructed 95% symmetric predictive interval and reported in Table 11. We
performed similar algorithm process which in given in Sec. 4 with the iteration
number M = 10000 and we used Eq. (9) and Eq. (10) to obtain prediction and
Eq. (11) for their predictive intervals. We take the first 500 values as burn-in pe-
riod and take every third variable as a thinng procedure. Estimations are obtained
under symmetric (SELF) and asymmetric (GELF) loss functions and they are rep-
resented with their expected risks. Under GELF, three different loss parameters
(c = −0.5, c = 0.5, c = 0.75) are considered. For example, based on given real data
set, prediction of the first observation of a future sample with size m = 5 is ob-
tained as 0.263357 with ER 0.000419 under SELF and 0.252411 with ER 0.000964
under SELF (c = −0.5). Table 11 shows that predictions are closer to each other
for the last observations. For all sample sizes and orders, GELF with c = −0.5 loss
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parameter has smallest expected risks. Prediction intervals are getting shorter by
increasing sample size m for each order.

8. Conclusions

Mance et al. [13] first considered the TSP distribution under reliability proper-
ties. Recently, moments of order statistics and stress-strength reliability estimation
under the STSP distribution were studied by Çetinkaya and Genç [8], [9]. In this
study, the STSP distribution is considered as a further research in statistical relia-
bility analysis. In this purpose, we introduced the importance of the distribution as
defined on a finite range and two-sided distribution in reliability context. Particular
reliability indices with their plots are presented. It has both convex and concave
reliability curves according to various cases of its parameters. Also, it has bathtube
failure rate for α < 1 so it is useful for modelling early life, useful life and wear out
proccesses of a component with only single model. By considering the behaviour
of the hazard function, the STSP distribution is IFR class of distribution for α > 1
and has better chance of surviving any shorter period and the worse chance of
surviving any larger period. For the various cases of its parameters, it has both
increasing and decreasing failure rate. We showed that the hazard plot is usable
to determine if a data comes from the STSP distribution or not. Estimation of the
reliability and hazard rate of the STSP distribution are obtained with maximum
likelihood method and Bayesian estimation method under different loss functions.
Loss functions are considered as symmetrical (SELF) and asymmetrical (LLF and
GELF). Based on reliability and hazard estimation studies, our conclusions can be
listed as follows;

• In all cases (t ≤ β, t > β), maximum likelihood estimates tend to give
overestimates.
• Being underestimating or overestimating is not only depend on loss param-

eters, it is also related to relation between t and β.
• Bayes estimates under squared error R̂B1 and Linex loss functions R̂B2

gives under estimates for t ≤ β and over estimates for t > β.
• Bayes estimates under general entropy loss function R̂B3 gives under esti-

mates for t ≤ β. On the other hand, for t > β it gives under estimate for
c = 0.5 and c = 1.
• Linex loss function is not proposed to obtain consistent estimations for

hazard rate since the second case of the hazard function in Eq. 3 brings
along large deviations even if small changes on α.
• For λ > 1 actual values of hazard function, Bayes estimates under GELF

has smaller expected risks and loss parameter c = 0.5 gives smallest risks.
• MLEs of hazard rate have smaller risks while actual values converges to

zero.
• While actual values of hazard rate λ converges to zero, ML gives better

results than Bayes estimates in terms of expected risks.
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Table 11. Bayesian point future predictions under SELF and
GELF, their expected risks and corresponding predictive bounds
for various sample size (m) and the first and last two ordered sam-
ples (r) based on given real dataset.

Bayes Point Predictors

GELF

m r SELF c = −0.5 c = 0.5 c = 0.75 Prediction Interval

5 1 0.263357 0.252411 0.225168 0.216594 0.078675 0.445661

(0.000419) (0.000964) (0.003864) (0.012944) (0.366985)

2 0.368356 0.362191 0.348675 0.344976 0.191825 0.504161

(0.000397) (0.000400) (0.000741) (0.002049) (0.312337)

4 0.542520 0.537029 0.525876 0.523051 0.364299 0.763211

(0.000536) (0.000237) (0.000346) (0.000886) (0.398912)

5 0.663595 0.657488 0.644880 0.641650 0.432850 0.897675

(0.000640) (0.000190) (0.000282) (0.000726) (0.464825)

10 1 0.211261 0.202036 0.179387 0.172369 0.062818 0.370456

(0.000411) (0.001357) (0.004510) (0.014746) (0.307638)

2 0.285261 0.279898 0.267940 0.264628 0.142756 0.419541

(0.000430) (0.000701) (0.001144) (0.003090) (0.276785)

9 0.638138 0.634510 0.627164 0.625311 0.468758 0.817628

(0.000981) (0.000300) (0.000334) (0.000786) (0.348871)

10 0.744783 0.740974 0.733117 0.731103 0.543045 0.928041

(0.000817) (0.000185) (0.000213) (0.000508) (0.384996)

15 1 0.175294 0.166855 0.146081 0.139594 0.049536 0.317008

(0.000378) (0.001819) (0.005730) (0.018808) (0.267472)

2 0.243967 0.238845 0.227423 0.224256 0.120202 0.366792

(0.000559) (0.001252) (0.001789) (0.004687) (0.246590)

14 0.690972 0.688235 0.682689 0.681288 0.534454 0.848207

(0.000893) (0.000234) (0.000250) (0.000580) (0.313753)

15 0.774991 0.772149 0.766314 0.764824 0.595999 0.935209

(0.000720) (0.000151) (0.000165) (0.000385) (0.339210)

20 1 0.166227 0.158357 0.139102 0.133144 0.048739 0.298049

(0.000447) (0.002244) (0.005961) (0.019004) (0.249311)

2 0.225341 0.220638 0.210224 0.207360 0.111514 0.340080

(0.000470) (0.001219) (0.001751) (0.004582) (0.228566)

19 0.721969 0.719759 0.715280 0.714149 0.578303 0.863639

(0.000883) (0.000211) (0.000221) (0.000507) (0.285337)

20 0.793014 0.790657 0.785832 0.784603 0.629258 0.939188

(0.000756) (0.000151) (0.000160) (0.000369) (0.309930)

*First rows in each coloumn represents the point estimation values and prediction interval (last

coloumn), the second rows in brackets represents the expected risks of the estimates and length
of prediction interval (last coloumn).
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All obtained results are illustrated with a real data example. The reliability and
hazard rate estimates for various fixed point are obtained. Convergency of the
obtained Markov chain is checked and consistent estimations are reported. Finally,
we obtained the prediction of the future observations based on given datasets. For
various sample size, the first two and last two observations are predicted with their
prediction interval.

There are still some other problems concerning the STSP distribution. For ex-
ample, censored or truncated sampling schemes may be considered in the frame of
reliability estimation and prediction.
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