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Abstract: Kumaraswamy distribution is introduced by [7] and it is particularly useful for many natural
phenomena whose outcomes have lower and upper bounds or bounded outcomes in biomedical and epi-
demiological research (see [12]). In this paper, a new statistical distribution called DUS-Kumaraswamy is
introduced by using DUS transformation (which is recently introduced by [6]) on Kumaraswamy distribu-
tion. The proposed distribution has the same domain as Kumaraswamy and it can be used as an alternative
model to describe the natural phenomena mentioned above. Several distributional properties such as mean,
variance, skewness, kurtosis, Lorenz and Bonferroni curves are studied. The statistical inference on the
parameters of Dus-Kumaraswamy is discussed by maximum likelihood methodology. A simulation study is
conducted to observe the behaviors of maximum likelihood estimates under different conditions. A numerical
example is also presented.

Key words : Data analysis, Kumaraswamy distribution, maximum likelihood estimator, monte carlo
simulation

1. Introduction
In this study, the DUS transformation of [7] is used to introduce a new distribution bounded

within (0,1). The Kumaraswamy distribution is considered as a baseline distribution in their DUS
transformation. Let F (x) and f (x) denote respectively the cumulative distribution function (cdf)
and probability density function (pdf) of baseline distribution. Then the pdf and cdf of the DUS
family are given, respectively, by

fDUS (x) =
1

e− 1
f (x)eF (x), x∈D (1.1)

and

FDUS (x) =
1

e− 1

(
eF (x)− 1

)
, (1.2)

where D is a domain of the baseline distribution with cdf F .
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The DUS transformation with a exponential cdf is considered by [7]. Using DUS transforma-
tion, the DUS-Lomax distribution is proposed by [4]. [5] introduced a new lifetime distribution
called DUS-Weibull distribution by using same mechanism. Recently, [10] generalized the DUS
transformation and they studied the exponential baseline in their generalized DUS transformation.

It was reported in these studies that the DUS transformation increases the distribution flexibility.
It can also be said that the DUS transformation has become a center of attraction in recent years.
In this paper, the DUS transformation is applied to the Kumaraswamy cdf to get new distribu-
tion. The paper is organized as follows. In Section 2, moments, hazard rate, survival and quantile
functions are obtained. The maximum likelihood method is discussed in Section 3. In Section 4, a
simulation study is also performed to observe the performance of the maximum likelihood estimate.
A numerical example is given to illustrate the capability of the proposed distribution for modeling
a real data in Section 5. In Section 6, concluding remarks are provided.

2. DUS-Kumaraswamy distribution
In this section, DUS transformation is applied to Kumaraswamy cdf. The pdf and cdf of the

Kumaraswamy distribution are given, respectively, by

fK (x) = αβxα−1 (1−xα)
β−1

, 0<x< 1, (2.1)

and

FK (x) = 1− (1−xα)
β
, (2.2)

where α,β > 0 are the parameters.
Using Eqs. (2.1) and (2.2) in Eqs. (1.1) and (1.2), respectively, the pdf and cdf of the new

distribution are given, respectively, by

fDUS−K (x) = 1
e−1αβx

α−1 (1−xα)
β−1

e(1−(1−x
α)β) , 0<x< 1 (2.3)

and

FDUS−K (x) =
1

e− 1

(
e(1−(1−x

α)β)− 1
)
, (2.4)

with parameters α > 0 and β > 0. The random variable X with cdf (2.2) is said to have two-
parameter DUS-Kumaraswamy distribution and it is denoted by DUS−K(α,β).

Fig. 1 presents the plots of the DUS−K(α,β) probability density function for some choices of
α and β. From Fig. 1, it is concluded that the pdf of DUS −K(α,β) can be unimodal as well as
have decreasing and increasing forms.
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Figure 1. Pdf plots of the DUS−K distribution for selected parameters values
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İSTATİSTİK: Journal of the Turkish Statistical Association 13(1), pp. 29–38, c© 2021 İstatistik 31

The survival function, S(x), and the hazard rate function, h(x), for DUS−K(α,β) distribution
are in the following forms:

SDUS−K(α,β) (x) =
e− e(1−(1−x

α)β)

e− 1
(2.5)

and

hDUS−K(α,β) (x) =
αβxα−1 (1−xα)

β−1
e(1−(1−x

α)β)

e− e(1−(1−xα)
β)

. (2.6)

Fig. 2 presents plots of the hazard rate function of DUS−K(α,β) for some selected values of α
and β. From Fig. 2, it is observed that the hazard function of introduced distribution is increasing.
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Figure 2. Hazard rate function plots of the DUS−K distribution for selected parameters values

The quantile function of the DUS−K(α,β) distribution is given by

Q (u;α,β) =
{

1− [1− log (1 +u (e− 1))]
1
β

} 1
α

, u∈ (0,1) . (2.7)

Using Eq. (2.7), the median is obtained as

Q (0.5;α,β) =
{

1− [1 + log (2)− log (1 + e)]
1
β

} 1
α

.

Let X be an absolutely continuous random variable with distribution function F . Then, by using
probability integral transformation, we can write

E (Xi:n)' F−1
(

i

n+ 1

)
, i= 1,2, . . . ,m, (2.8)

where Xi:n is the ith order statistic of the sample of size n and F−1 is the inverse of F.
Let X be a random variable from DUS family with a baseline cdf F in (1.2). Using Taylor series

expansion, the distribution function of X can be written as

G (x) =
1

e− 1

(
eF (x)− 1

)
=

1

e− 1

∞∑
i=0

(F (x))
i

i!
− 1

=
1

e− 1

∞∑
i=0

FYi:i (x)

i!
− 1, (2.9)
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where Yi:i is the ith order statistic of sample of size i from K(α,β) with cdf FYi:i (x). Using (2.9),
the expected value of DUS−K(α,β) can be represented by

E (X) =
1

e− 1

∞∑
i=0

1

i!
E (Yi:i) , (2.10)

where fi:i (y) is pdf of Yi:i. Using (2.8) in (2.10) and quantile function of Kumaraswamy distribution,
the approximate expected value of DUS−K(α,β) is obtained as

E (X)' 1

e− 1

∞∑
i=0

1

i!

(
1−

(
i

n+ 1

)1/β
)1/α

. (2.11)

Let X be the DUS−K(α,β) random variable with pdf (2.3). Then, for r= 1,2, ..., the approximate
r-th moment of X is given by

µr =

∫ 1

0

xrf (x)dx

=

∫ 1

−1

1

2

(
y` + 1

2

)r
f

(
y` + 1

2

)
dy

'
N∑
l=1

$`

1

2

(
y` + 1

2

)r
f

(
y` + 1

2

)
, (2.12)

where f (·) is the pdf given in Eq. (2.3), y` and $` are the zeros and the corresponding Christoffel
numbers of the Legendre-Gauss quadrature formula on the interval (−1,1), respectively, see [2]. It
is also noticed here, $` is given by

$` =
2

(1− y`)2
[
L

′
N+1 (y`)

]2 , (2.13)

where

L
′

N+1 (y`) =
dLN+1 (y)

dy
(2.14)

at y= y` and LN+1 (·) is the Legendre polynomial of degree N .
The relation between the approximation of the mean and degree (N) of Legendre polynomial is

presented in Fig. 3. It can be observed that N = 30 is enough to reach the acceptable approximation
to the true mean.

For some selected parameters, the mean, variance, skewness and kurtosis ofDUS−K distribution
are presented in Table 1. The values of N has been taken to be N = 30 in the numerical calculations.

The Bonferroni and Lorenz curves are introduced by [1]. They have applications in economics
and insurance. In the following, we give the Bonferroni and Lorenz curves of DUS − K(α,β)
distribution.

Let the random variable X have DUS−K(α,β) distribution with pdf (2.3). Then, the Bonferroni
and Lorenz curves are given, respectively, by

BC (ξ) =
q2

4ξµ1

N∑
`=0

$`

(
y
`
+ 1
)
f
(q

2

(
y
`
+ 1
))
, (2.15)

and

LC (ξ) =
q2

4µ1

N∑
`=0

$`

(
y
`
+ 1
)
f
(q

2

(
y
`
+ 1
))
, (2.16)

where $` is given by (2.13) and q= F−1 (ξ).
In the following, we compute the well-known stress-strength reliability R = P (Y <X) for the

model under concern.
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Figure 3. The relationship between approximated mean and degree (N) of Legendre polynomial

Table 1. The mean, variance, skewness and kurtosis of DUS−K(α,β) distribution for different values of α and β

α β Mean Variance Skewness Kurtosis

0.5 0.5 0.6251 0.1134 -0.5366 1.8555
1.5 0.2951 0.0680 0.7450 2.4860
3 0.1341 0.0237 1.6482 5.6597

1.5 0.5 0.7948 0.0592 -1.4293 4.2872
1.5 0.5822 0.0548 -0.3473 2.1865
3 0.4268 0.0432 0.1011 2.2450

3 0.5 0.8698 0.0341 -2.4082 9.7298
1.5 0.7411 0.0328 -0.9021 3.3317
3 0.6294 0.0307 -0.5212 2.7864
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Figure 4. The Bonferroni curves of DUS−K(α,β) distribution

Proposition 1. Let Y and X be independent stress and strength random variables that fol-
low Dus-K distribution with parameters (α,β1) and (α,β2), respectively. Then, the stress–strength
reliability R is

R =
1

(e− 1)
2

∞∑
n1=0

∞∑
n2=0

n1∑
i=0

n2∑
j=0

(−1)
j+i

n1!n2!

×
(
n1

i

)(
n2

j

)
β1

iβ1 + jβ2 +β1

− 1

e− 1
,

where β1 and β2 are positive integers.
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Figure 5. The Lorenz curves of DUS−K(α,β) distribution

Proof. The stress-strength reliability can be written as

R =

1∫
0

P (Y <X |X = x)fX (x)dx

=

1∫
0

FY (x)fX (x)dx

=
1

(e− 1)
2

1∫
0

(
exp

(
1− (1−xα)

β1
)
− 1
)

(2.17)

×αβ2x
α−1 (1−xα)

β2−1 exp
(

1− (1−xα)
β2
)
dx.

Hence the proof follows by using Taylor and binomial expansions on terms in (2.17).
It is said that X is smaller than Y according to likelihood ratio ordering if

fX (x)

fY (x)
is nondecreasing in x,

where fX (·) and fY (·) are the pdfs of X and Y random variables, respectively. We write X ≤lr Y
to represent that the random variable X is smaller than Y in the likelihood ratio ordering. The
following proposition gives likelihood ratio order properties for the random variables with Dus-K
distribution.

Proposition 2. Let X ∼DUS-K(α,β1) and Y ∼DUS-K(α,β2). If β1 >β2 then X ≤lr Y .

Proof. For any x∈ (0,1) the ratio of the densities of X and Y is given by

g (x) =
β1 (1−xα)

β1−1 exp
(

1− (1−xα)
β1
)

β2 (1−xα)
β2−1 exp

(
1− (1−xα)

β2
) .

X ≤lr Y is equivalent to g (x) is decreasing in x. Let us consider

d log (g (x))

dx
= r (x)h (x) ,
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where

r (x) =
αxα

x (1−xα)

and
h (x) = β1

[
(1−xα)

β1 − 1
]
−β2

[
(1−xα)

β2 − 1
]
.

It is pointed out that we can easily write r (x)> 0 for all α> 0 and x∈ (0,1) . It is also clearly that
(1−xα)

β
is decreasing function in β for x∈ (0,1) . Then we can write

(β1 >β2) =⇒ (1−xα)
β2 > (1−xα)

β1

=⇒ (1−xα)
β2 − 1> (1−xα)

β1 − 1

=⇒ β2

[
(1−xα)

β2 − 1
]
>β1

[
(1−xα)

β1 − 1
]

=⇒ β1

[
(1−xα)

β1 − 1
]
−β2

[
(1−xα)

β2 − 1
]
< 0

=⇒ h (x)< 0

Therefore, we have
d log (g (x))

dx
= r (x)︸︷︷︸

>0

h (x)︸︷︷︸
<0

< 0

for β1 > β2. The last inequality shows that g (x) is decreasing in x and it implies X ≤lr Y for
β1 >β2.

Corollary 1. It follows from [11] that X is also smaller than Y in the hazard rate, mean
residual life and stochastic orders under the conditions given in Proposition 2.

3. Maximum likelihood estimation
Let X1,X2, . . . ,Xn be the i.i.d sample from DUS−K(a,β), then the likelihood and log-likelihood

functions can be written as

L (α,β) =
n∏
i=1

(
1

e− 1
αβxα−1i (1−xαi )

β−1
e(1−(1−x

α
i )
β)
)

(3.1)

and

` (α,β) = −n log (e− 1) +n log (α) +n log (β) + (α− 1)

n∑
i=1

log (xi) (3.2)

+ (β− 1)
n∑
i=1

log (1−xαi ) +
n∑
i=1

(
1− (1−xαi )

β
)
,

respectively. The corresponding likelihood equations are found to be

∂` (α,β)

∂α
=

n∑
i=1

log (xi) + (β− 1)

n∑
i=1

(
−x

α
i log (xi)

1−xαi

)
(3.3)

+
n∑
i=1

(1−xαi )
β
βxαi log (xi)

1−xαi
+
n

α
= 0,

∂` (α,β)

∂β
=
n

β
+

n∑
i=1

log (1−xαi ) +
n∑
i=1

(
− (1−xαi )

β
log ((1−xαi ))

)
= 0. (3.4)
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The Eqs. (3.3) and (3.4) cannot be solved explicitly. It can be solved by some iterative methods.
In the next section, the fminsearch (MATLAB function) command is used for this purpose. fmin-
search function uses the simplex search method of [8].

4. Simulation study
In this section, a simulation study is conducted to observe the properties of MLE discussed in

the Section 3. In Table 2, for different choices of (n,α,β), we present the biases and mean squares
errors (MSEs) of the estimates with 5000 replications. From Tables 1, it is observed that the MLEs
are biased but asymptotically unbiased. Also, when the sample size n increases, the bias and MSEs
of the MLEs decrease to zero as desired.

Table 2. Bias and MSEs of MLE estimators for selected parameters

Bias MSE

α β n α̂ β̂ α̂ β̂
2 2 50 0.0870 0.1212 0.0075 0.0147

100 0.0466 0.0644 0.0021 0.0041
200 0.0256 0.0330 0.0006 0.0010
300 0.0162 0.0210 0.0002 0.0004
500 0.0098 0.0131 0.0001 0.0001

3 0.5 50 0.2787 0.0185 0.0787 0.0003
100 0.1429 0.0101 0.0204 0.0001
200 0.0749 0.0050 0.0056 0.0000
300 0.0467 0.0031 0.0021 0.0000
500 0.0283 0.0020 0.0008 0.0000

0.7 1.5 50 0.0348 0.0885 0.0012 0.0078
100 0.0179 0.0424 0.0003 0.0018
200 0.0099 0.0221 0.0001 0.0004
300 0.0062 0.0140 0.0000 0.0001
500 0.0038 0.0087 0.0000 0.0000

5. Real data application
In this section, we provide an application with real data to illustrate the flexibility of the DUS−

K(α,β) model. For illustrative purposes, we consider a real data set and compare with some
statistical distributions. The data set represents the total milk production in the first birth of 107
cows from the SINDI race. This data can be found in [3]. We consider the Kumaraswamy (Kw)
([7]), exponentiated Kumararaswamy (EKw) ([9]), Weibull (W) ([13]) and beta (B) distributions
to compare the fitting ability of the DUS−K(α,β) distribution.

The pdf of the distributions used in comparison study are given as follows:
Kw distribution:

fKw (x;α,β) = αβxα−1 (1−xα)
β−1

, α,β > 0

EKw distribution:

fEKw (x;θ,α,β) = αβθxα−1 (1−xα)
β−1
(

1− (1−xα)
β
)θ−1

, θ,α,β > 0

W distribution

fW (x;α,θ) =
α

θ

(x
θ

)α−1
exp

(
−
(x
θ

))α
, α, θ > 0



Karakaya et al.: On the DUS-Kumaraswamy Distribution
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B distribution

fB (x;a, b) =
1

B (a, b)
xa−1 (1−x)

b−1
, a, b > 0

The unknown parameters are estimated for each distribution by the maximum likelihood method.
The goodness-of-fit statistics including the values of the Akaike information criterion (AIC),
Bayesian information criterion (BIC) where the lower values of AIC,BIC and -2` values are pre-
sented in Table 3. From the Table 3, we observed that the DUS −K model is the best model to
fit the milk data.

Table 3. Results of AIC, BIC and log-likelihood for DUS−K and other distributions for the data set summaries

Model Parameters AIC BIC −2`

Dus-K α̂= 1.9198, β̂ = 3.6421 -50.360 -45.015 -54.361

Kw α̂= 2.1949, β̂ = 3.4363 -46.789 -41.443 -50.789

EKw θ̂= 0.3361, α̂= 5.315, β̂ = 7.141 -27.557 -49.114 -41.443

W α̂= 2.6012, θ̂= 0.5236 -38.695 -33.349 -42.695

B â= 2.4125, b̂= 2.8296 -43.554 -38.208 -23.777
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Figure 6. Empirical and fitted distribution function based on milk data

6. Conclusions
In this paper, we introduce a new lifetime distribution by using Dus transformation on

Kumaraswamy cdf. Several characteristics have been calculated for the new distribution. Based
on our example with the real data, we observed that Dus transformation increases the modelling
capability of Kumaraswamy distribution. The proposed distribution has been found to be better
than the other well-known distributions in terms of AIC.
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