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A survey on recent results in Korovkin’s approximation theory
in modular spaces
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ABSTRACT. In this paper, we give a survey about recent versions of Korovkin-type theorems for modular function
spaces, a class which includes Lp, Orlicz, Musielak-Orlicz spaces and many others. We consider various kinds of
modular convergence, using certain summability processes, like triangular matrix statistical convergence, and filter
convergence (which are generalizations of the statistical convergence). Finally, we consider an abstract axiomatic
convergence which includes the previous ones and even almost convergence, which is not generated by any filter, as
we show by an example.
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1. INTRODUCTION

Korovkin’s approximation theory is one of the main research topics of Professor France-
sco Altomare. His famous monography ([3]), written in collaboration with Professor Michele
Campiti, represents a fundamental reference point for any mathematicians who wish to study
approximation theory by positive linear operators. Later on (see [2]), Altomare introduced a
different approach to the theory developed in [3], obtaining general and unifying results.

The origin of this theory is the classical Bernstein proof of the Weierstrass theorem, where the
author shows the uniform convergence of the Bernstein polynomials of a continuous function
f over the compact interval [0, 1] by stating it only for the test functions {1, x, x2}, see [13]. This
method was first generalized by H. Bohman ([18], who applied it to certain interpolating dis-
crete operators acting on continuous functions over [0, 1]) and then by P.P. Korovkin, for general
positive linear operators [33] (see also the monograph [34]). In the meantime, also trigonomet-
ric versions of this basic result were obtained, by using the test functions {1, cosx, sinx}, (see
e.g. [20]), and more generally functions which form a so-called Chebyshev system (that is a set
of functions such that a linear combination of them has no more than two zeros on an interval,
whenever its coefficients are not simultaneously null).

Several extensions in multivariate frame are also available in literature (see e.g. [12], [25],
[43]).

The Korovkin theorem was successfully applied for stating uniform convergence for a very
large class of integral or discrete positive operators, acting on continuous functions defined
over compact intervals of the real line or also on compact sets in Euclidean spaces. Later,
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several extensions are obtained when the functions are defined on not necessarily compact
intervals, using certain suitable weight functions, so obtaining weighted uniform convergence
(see e.g. [29], [30]).

However, a unifying and general approach to Korovkin-type approximation was given in
the quoted book [3] and in the extensive article [2], in which the authors expose the theory in
the spaces C(X), where X is a locally compact topological space, together with its numerous
applications.

Recently, versions of the Korovkin theorem were obtained in different functional spaces,
namely Lp-spaces, or more general Lebesgue spaces (see [21], [26], [32], [42]), Orlicz-type
spaces (see [37]). In this respect, many authors gave contributions to this theory and we re-
fer to the exhaustive list of references of [2].

Our aim is to report a group of Korovkin-type theorems obtained by us in the abstract set-
ting of the so-called modular spaces, a class of function spaces which includes Lp spaces, Orlicz
and Musielak–Orlicz spaces, weighted spaces, certain interpolation spaces, and many others.
The theory of modular spaces was started by H. Nakano ([41]), but extensively studied by J.
Musielak ([40]) and later on by W.M. Kozlowski ([36]). An abstract approach to the theory of
approximation in modular spaces was given in [10]. The theory of Korovkin-type approxima-
tion in modular spaces enables one to obtain a unifying approach, which includes by a unique
method, many previous results on the subject. Also, it is possible to obtain general results
using a different notion of convergence, namely, filter-type convergence, including the case of
the statistical convergence, relative uniform convergence with respect to scale functions, or an
axiomatic abstract convergence, which includes filter convergence, triangular matrix statistical
convergence and even almost convergence, which is not generated by any filter (see also [1],
[4], [11], [15], [16], [17], [23], [24], [27], [28], [31], [39], [44]).

In Section 2, we introduce the modular function spaces for functions defined over nonemp-
ty open sets of an Hausdorff locally compact topological space. Then in Section 3, we report a
Korovkin-type theorem for a family of positive linear operators acting on suitable subspaces of
the modular spaces established in [8], [9], and we discuss some interesting examples. Then in
Section 4, we report an extension of the previous results employing filter convergence, show-
ing by examples that these new results are authentic extensions. Section 5 contains extensions
of the Korovkin theorem with respect to generalized versions of statistical modular conver-
gence, defined through certain summability processes involving regular matrices, and we give
a comparison between this kind of convergence and filter convergence. In Section 6, we report
some extensions of the Korovkin theorem to an abstract convergence introduced axiomatically,
which includes the previous ones and other kinds of convergences not generated by any filter
(see [5], [6], [17] and the references therein).

2. MODULAR FUNCTION SPACES

Let G be a Hausdorff locally compact topological space endowed with a regular measure µ
defined on the Borel sets of G.

We will denote by L0(G) the space of all real-valued Borel measurable functions f : G → R
provided with equality µ-a.e. A functional % : L0(G)→ R̃+

0 is said to be a modular on L0(G) if
i) %[f ] = 0⇔ f = 0, a.e. in G,

ii) %[−f ] = %[f ], for every f ∈ L0(G),
iii) %[αf + βg] ≤ %[f ] + %[g], for every f, g ∈ L0(G), α, β ≥ 0, α+ β = 1.

We will say that a modular % is Q-quasi convex if there is a constant Q ≥ 1 such that

%[αf + βg] ≤ Qα%[Qf ] +Qβ%[Qg],
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for every f, g ∈ L0(G), α, β ≥ 0, α+ β = 1. If Q = 1, we will say that % is convex.
By means of the functional %, we introduce the vector subspace of L0(G), denoted by L%(G),
defined by

L%(G) = {f ∈ L0(G) : lim
λ→0+

%[λf ] = 0}.

The subspace L%(G) is called the modular space generated by %. It is easy to see that when % is
Q-quasi-convex, we have the following characterization of the modular space L%(G) :

L%(G) = {f ∈ L0(G) : %[λf ] < +∞ for some λ > 0},
see for example [40] and [10]. The subspace of L%(G)defined by

E%(G) = {f ∈ L%(G) : %[λf ] < +∞ for all λ > 0}
is called the space of the finite elements of L%(G), see [40].
The following assumptions on modulars will be used:

a) % is monotone, i.e. for f, g ∈ L0(G) and |f | ≤ |g|, then %[f ] ≤ %[g].
b) % is finite, i.e. denoting by e0 the function e0(t) = 1 for every t ∈ G, e0 ∈ L%(G).
c) % is absolutely finite, i.e. % is finite and for every ε > 0, λ > 0 there is δ > 0 such that
%[λχB ] < ε for any measurable subset B ⊂ G with µ(B) < δ. Here, χB denotes the
characteristic function of the set B.

d) % is strongly finite, i.e. e0 ∈ E%(G).
e) % is absolutely continuous, i.e. there exists α > 0 such that for every f ∈ L0(G), with

%[f ] < +∞, the following condition is satisfied: for every ε > 0 there is δ > 0 such that
%[αfχB ] < ε, for every measurable subset B ⊂ G with µ(B) < δ.

For the above notions, see [10], [40]. Note that, since µ(G) < +∞, if % is strongly finite and
absolutely continuous, then it is also absolutely finite.
Classical examples of modular spaces are given by the Orlicz spaces generated by a ϕ-function
ϕ or, more generally, by any Musielak-Orlicz space generated by a ϕ-function ϕ depending on
a parameter, satisfying some growth condition with respect to the parameter (see [10], [36],
[40] in some special cases). The modular functionals generating the above spaces satisfy all the
previous assumptions.

We say that a sequence of functions (fn)n∈N ⊂ L%(G) is modularly convergent to a function
f ∈ L%(G), if there exists λ > 0 such that

lim
n→+∞

%[λ(fn − f)] = 0.

This notion extends the norm-convergence in Lp-spaces. Moreover, it is weaker than the F-
norm-convergence induced by the Luxemburg F-norm generated by % and defined by

‖f‖ρ ≡ inf{u > 0 : %[f/u] ≤ u}.
We recall that a sequence of functions (fn)n∈N is F-norm-convergent (or strongly convergent)
to f if

lim
n→+∞

%[λ(fn − f)] = 0

for every λ > 0. The two notions of convergence are equivalent if and only if the modular
satisfies the ∆2-condition, i.e. there exists a constant M > 0 such that %[2f ] ≤M%[f ], for every
f ∈ L0(G), see [40]. For example, this happens for all Lp-spaces and Orlicz spaces generated by
ϕ-functions with the ∆2-regularity condition (see [10], [40]). The modular convergence induces
a topology on L%(G), called modular topology. Given a subset B ⊂ L%(G), we will denote by
B the closure of B with respect to the modular topology. Then f ∈ B if there is a sequence
(fn)n∈N ⊂ B such that fn is modularly convergent to f.
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Let A ⊂ G be an open set such that A is compact. We will denote by L0(A), L%(A), E%(A),
the corresponding spaces. We denote by C(A) the space of all continuous and bounded real
functions defined on A and by Cu(A) the subset of C(A) whose elements have a continuous
extension to A. It is easy to show that C(A) ⊂ L%(A),whenever % is monotone and finite. In-
deed, for λ > 0 we have %[λf ] ≤ %[λ‖f‖∞e0], and so, since e0 ∈ L%(A),we have lim

λ→0+
%[λf ] = 0,

that is f ∈ L%(A). Analogously, if % is monotone and strongly finite, then C(A) ⊂ E%(A).

We will denote by Cc(G) the subspace of C(G) comprising all the functions with compact
support on G. If % is monotone and finite, then Cc(G) ⊂ L%(G), and if moreover % is strongly
finite, Cc(G) ⊂ E%(G).

We have the following (see [38]).

Proposition 1. Let % be a monotone, strongly finite and absolutely continuous modular onL0(G). Then
Cc(G) = L%(G). Moreover, if A ⊂ G is an open set such that A is compact, we have Cu(A) = L%(A).

3. A KOROVKIN THEOREM FOR THE MODULAR CONVERGENCE

Let A ⊂ G be an open set with compact closure and let e1, . . . em be m functions in Cu(A)
such that the following property (P) holds: there exist continuous functions ai ∈ Cu(A), i =
1, . . .m such that the function

Ps(t) =

m∑
i=1

ai(s)ei(t), s, t ∈ A(3.1)

is positive and is equal to zero if and only if s = t.
Let T = (Tn)n∈N be a family of positive linear operators Tn : D → L0(A), where Cu(A) ⊂

D ⊂ L0(A). Here, D is the domain of the operators Tn.
We will assume that the family (Tn)n∈N satisfies the following property (∗): there exist a subset
XT ⊂ D ∩ L%(A) with Cu(A) ⊂ XT and a constant R > 0 such that for every function f ∈ XT,
we have Tnf ∈ L%(A) and

lim sup
n→+∞

%[λ(Tnf)] ≤ R%[λf ]

for every λ > 0.
Note that if Tn : D → L0(A) are equi-continuous operators in L%(A), i.e.

%[λTnf ] ≤ R%[λf ]

for an absolute constant R > 0, for every λ > 0 and for every f ∈ D ∩ L%(A), then clearly we
can take XT = L%(A) ∩ D.

In what follows, we will assume that

lim
n→+∞

Tnei = ei, i = 1, . . .m modularly in L%(A).(3.2)

A first result concerns the space Cu(A) (see [8, Lemma 4]).

Theorem 1. Let % be a finite, monotone and Q-quasi-convex modular. Let the assumptions (P) and
(3.2) be satisfied. Then for every f ∈ Cu(A), we have

lim
n→+∞

Tnf = f modularly in L%(A).

Then, using Theorem 1 and the density result expressed by Proposition 1, the following
result holds (see [8, Theorem 1]).
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Theorem 2. Let % be a monotone, strongly finite, absolutely continuous and Q-quasi-convex modular
on L0(A). Let T = (Tn)n∈N be a sequence of positive linear operators satisfying property (∗). Let the
assumption (P) be satisfied. If

lim
n→+∞

Tnei = eii = 1, . . . ,m, strongly in L%(A),

then lim
n→+∞

Tnf = f, modularly in L%(A) for each f ∈ L%(A) ∩ D such that f − Cu(A) ⊂ XT.

Theorem 2 can be applied to several positive linear operators in functional spaces. As exam-
ple, it can be applied to positive operators of the form

(Snf)(x) :=

r(n)∑
k=0

Kn(x, νn,k)f(νn,k) (n ∈ N, x ∈ A) (f ∈ L%(A)).

Here, A ⊂ RN is a bounded open set, r(n) is an increasing sequence of natural numbers, and
Γn = (νn,k)k=0,1,...,r(n) ⊂ A, νn,k = (ν1

n,k, . . . , ν
N
n,k) is a sequence of points such that their union

is dense in A.
In this and in the next example, we set e0(t) = 1, ei(t) = ti, i = 1, 2, . . . , N and eN+1(t) = |t|2,

for every t = (t1, . . . , tN ) ∈ A. For details, see [8, Section 4].
Another example is given by linear integral operators with positive kernel of Mellin-type.

Let us consider A = [0, 1]N and for any vectors t = (t1, . . . , tN ), x = (x1, . . . , xN ) ∈ A, we put
tx = (t1x1, . . . , tNxN ). Let (Kn)n∈N be a sequence of kernel functions Kn : A→ R+

0 such that∫
A

Kn(t)dt = 1 and
∫
A

Kn(t)

t1 · · · tN
dt ≤W

for every n ∈ N, where W is an absolute constant.
For any function f ∈ L%(A), we define the positive linear operator

(Tnf)(x) =

∫
A

Kn(t)f(tx)dt, x ∈ A.

In this instance, we can show that L%(A) ⊂ D = DomT =
⋂
n∈NDomTn, where DomTn is the

subset of L0(A) on which Tnf is well defined as a measurable function of x ∈ A. For details,
see [8, Section 5].

4. KOROVKIN’S THEOREM FOR FILTER MODULAR CONVERGENCE

Here, we report extensions of Korovkin’s theorem in modular spaces when the convergence
is taken in a generalized form, namely involving filters. We begin with some properties of the
filters of N.

A nonempty family F of subsets on N is called a filter of N iff ∅ 6∈ F , A ∩ B ∈ F whenever
A,B ∈ F and for each A ∈ F and A ⊂ B we have B ∈ F . A sequence (xn)n ⊂ R is said to be
F-convergent to x ∈ R iff for every ε > 0, the set {n ∈ N : |xn − x| ≤ ε} is an element of F . We
denote this by writing x = (F) lim

n
xn. We now introduce the filter versions of the limsup and

liminf operations. Let x = (xn)n be a sequence in R and set

Ax = {a ∈ R : {n ∈ N : xn ≥ a} 6∈ F}, Bx = {b ∈ R : {n ∈ N : xn ≤ b} 6∈ F}.
The F-limit superior and the F-limit inferior of (xn)n are defined by

(F) lim sup
n

xn =

{
supBx if Bx 6= ∅
−∞ if Bx = ∅ , (F) lim inf

n
xn =

{
inf Ax if Ax 6= ∅
+∞ if Ax = ∅ ,(4.3)

respectively. For a related concept, see [22].
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Among the examples of filters, we mention here the following two: the filter Fcofin of all
subsets on N whose complement is finite, and the filter Fd associated with the statistical con-
vergence, that is the set of all subsets of N whose asymptotic density is 1 (see e.g. [35]). In the
first example, the notions of limsup and liminf coincide with the usual ones. The filter Fcofin is
known as the Fréchet filter.

A filter F is said to be free if it contains the Fréchet filter. In the following, we assume that all
the involved filters are free. We will use a uniformity U ⊂ 2G×G which generates the topology
of the locally compact Hausdorff space G. Let B be the σ-algebra of all Borel subsets of G
and let µ be a σ-finite and regular measure on B. Here, we denote by Cb(G) the subspace of
C(G) comprising all the bounded functions on G. As before, Cc(G) will denote the subspace
of Cb(G) containing all the functions with compact support on G. We define now the notion
of modular convergence in a modular space L%(G) in the context of filter convergence. A
sequence (fn)n ⊂ L%(G) is said to be F-modularly convergent to f ∈ L%(G) if there exists
λ > 0 such that

(F) lim
n
%(λ(fn − f)) = 0.

Note that in case of the Fréchet filter, the filter modular convergence coincides with usual mod-
ular convergence. Also, with the same method, it is possible to introduce a notion of strong
modular convergence in the context of filters.

In order to obtain an extension of the results of Section 3, let ei, i = 0, 1, . . .m, be functions
in L%(G) such that (3.1) holds, in which we assume that it holds for every s, t ∈ G and the
following further conditions hold:

(P.1) Ps(s) = 0 for all s ∈ G,
(P.2) for every U ∈ U there is δ > 0 such that for s, t ∈ G such that (s, t) 6∈ U one has

Ps(t) ≥ δ.
In [7, Example 4.1], there are described several examples of functions Ps(t) satisfying the above
assumptions. Moreover, we will modify slightly assumption (∗) simply replacing the space
Cu(A) by Cb(G).

We have the following extension.

Theorem 3. Let % be a strongly finite, monotone and Q-quasi convex modular. Assume that the func-
tions ei and ai, i = 0, 1, . . . ,m, satisfy assumptions (P.1) and (P.2). Let (Tn)n be a sequence of
positive linear operators satisfying the modified property (∗). If Tnei is F-modularly convergent to ei
for i = 0, . . . ,m in L%(G), then Tnf converges F-modularly to f in L%(G) for every f ∈ Cc(G). If
Tnei is F-strongly convergent to ei, i = 0, 1, . . . ,m in L%(G), then Tnf is F-strongly convergent to
f ∈ L%(G) for every f ∈ Cc(G).

The next theorem, which uses as a Lemma the previous theorem, extends also some previous
Korovkin-type theorems in the setting of the statistical convergence, since the filter modular
convergence is a generalization of the statistical convergence.

Theorem 4. Let % be a strongly finite, monotone, absolutely continuous and Q-quasi convex modular
on L0(G). Let (Tn)n be a sequence of positive linear operators satisfying the modified property (∗). If
Tnei is F-strongly convergent to ei, i = 0, 1, . . . ,m, in L%(G), then Tnf is F-modularly convergent
to f in L%(G) for all f ∈ L%(G) ∩ D such that f − Cb(G) ⊂ XT.

Further extensions of Theorem 4 can be also obtained for not necessarily positive linear
operators, in case of functions defined over bounded intervals I ⊂ R with certain regularity
assumptions (see [4], [7]).
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5. DOUBLE SEQUENCES OF POSITIVE LINEAR OPERATORS AND KOROVKIN’S THEOREM WITH
RESPECT TO A GENERALIZED VERSION OF STATISTICAL CONVERGENCE

Here, we report a generalized version of the Korovkin theorem in case of double sequences
of positive linear operators, employing a generalized concept of statistical convergence which
involves regular matrices and their submatrices. This theory started in [5] in which a kind
of "triangular matrix statistical convergence" was introduced for double sequences of positive
linear operators in the space of continuous functions over compact subsets of R2 = R × R.
This notion represents an extension of the known A-statistical convergence, defined through a
regular matrix A, extensively studied in several previous papers (see e.g. [4], [24], [27], [39]).

For what concerns modular function spaces, in [6] we introduce a generalization of the tri-
angular A-statistical convergence. In the present section, we describe this new method.

Let A = (ai,j)i,j be a two-dimensional infinite matrix. Given a double sequence x = (xi,j)i,j
of real numbers, set

(Ax)i :=

∞∑
j=1

ai,jxi,j ,

provided that the series is convergent. We say that A is regular if it maps every convergent
sequence into a convergent sequence with the same limit. We now recall the Silverman-Toeplitz
conditions, which are a characterization of regular two-dimensional matrix transformations (see
e.g. [4]). Here, Ψ : N× N→ R is a fixed function.

(i) ‖A‖ = sup
i∈N

∞∑
j=1

|ai,j | <∞,

(ii) lim
i
ai,j = 0 for each j ∈ N,

(iii) lim
i

∞∑
j=1

ai,j = 1.

We say that A is a summability matrix iff it satisfies the following conditions:

(A1)
∑

j∈N,Ψ(i,j)≥0

ai,j ≤ 1 for each i ∈ N,

(A2) lim
i

∑
j∈N,Ψ(i,j)≥0

ai,j > 0,

(A3) lim
i
ai,j = 0 for every j ∈ N

(see also [17]).
Let A = (ai,j)i,j be a nonnegative regular matrix, K ⊂ N2, Ki := {j ∈ N: (i, j) ∈ K,

Ψ(i, j) ≥ 0} and let |Ki| denote the cardinality of Ki, for each i ∈ N. The Ψ-A-density of K is
defined by

δΨ
A(K) := lim

i

∑
j∈Ki

ai,j ,

provided that the limit on the right-hand side exists in R.
It is not difficult to check that the Ψ-A-density satisfies the following properties:

j) δΨ
A(N2) = 1,

jj) if H1 ⊂ H2, then δΨ
A(H1) ≤ δΨ

A(H2),
jjj) δΨ

A(N2 \K) = 1− δΨ
A(K), provided that K has a Ψ-A density.

Note that from j), jj) and jjj), it follows that the family

FΨ
A := {K ⊂ N2 : δΨ

A(N2 \K) = 0}(5.4)
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is a filter of N2 (Observe that the notion of (free) filter of N2 and the corresponding concept
of filter convergence can be given analogously as those of filter of N and filter convergence
presented in Section 4). In order to prove that FΨ

A is free, it is enough to see that, if p, q ∈ N and
K := {(i, j) ∈ N2: i ≥ p, j ≥ q}, then δΨ

A(N2 \K) = 0. Indeed, we have N2 \K ⊂ K(1) ∪K(2),
where

K(1) =

q−1⋃
j=1

(N× {j}), K(2) =

p−1⋃
i=1

({i} × N).

From (A3), it follows that

δΨ
A(K(1)) = lim

i

∑
j∈[1,q−1],Ψ(i,j)=0

ai,j ≤ lim
i

q−1∑
j=1

ai,j = 0.

Furthermore, note that δΨ
A(K(2)) = 0, since K(2)

i = ∅ for all i ≥ p. Hence, δΨ
A(N2 \K) = 0, that

is the claim.
Let A = (ai,j)i,j be a nonnegative regular summability matrix. The double sequence x =

(xi,j)i,j is said to be Ψ-A-statistically convergent to L if for any ε > 0 we get

lim
i

∑
j∈Ki(ε)

ai,j = 0,

where Ki(ε) = {j ∈ N: Ψ(i, j) ≥ 0, |xi,j − L| ≥ ε}, and we write stΨA-lim
i
xi,j = L.

By stΨA-lim sup
i

xi,j and stΨA-lim inf
i

xi,j , we denote the quantities

lim sup
i

∑
j∈Ki(ε)

ai,j and lim inf
i

∑
j∈Ki(ε)

ai,j ,

respectively.
If we take Ψ(i, j) = i − j, we obtain the notion of triangular A-statistical convergence (see

also [5]). Observe that, if A = C1 is the Cesàro matrix, defined by setting

ai,j :=


1

i
if j ≤ i,

0 otherwise,

then the Ψ-A-statistical convergence can be considered as a generalized concept of the classical
statistical convergence.

The Ψ-density δΨ(K) is defined by

δΨ(K) = lim
i

1

i
|Ki|.

The double sequence x = (xi,j)i,j is said to be Ψ-statistically convergent to L if for each ε > 0
the set K(ε) := {(i, j) ∈ N2: Ψ(i, j) ≥ 0, |xi,j − L| ≥ ε} has triangular density zero, and we
write stΨ-lim

i
xi,j = L.

We denote by stΨA the set of all Ψ-A-statistically convergent sequences.
Observe that, thanks to (5.4), filter convergence in N2 is weaker than Ψ-A-statistical conver-

gence, but in general these two convergences are not equal (see also [17, Section 4]). Indeed,
we claim that there is some filter F of N2 such that, for each summability matrix A, there ex-
ists a set K ∈ F \ FΨ

A . Pick arbitrarily a summability matrix A = (ai,j)i,j . Thanks to (A1)
and (A2), it is possible to find a real number B0 ∈ (0, 1] and an infinite subset S ⊂ N with
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j∈N,Ψ(i,j)≥0

ai,j ≥ B0 for all i ∈ S (see [17]). Let S1 and S2 be two disjoint infinite subsets of S,

with S = S1 ∪ S2. Let K := {(i, 1): i ∈ N} ∪ {(i, j) : i ∈ S1, Ψ(i, j) ≥ 0}. Taking into account
(A3), we get

0 ≤ lim inf
i∈N\S1

∑
j∈N:(i,j)∈K,Ψ(i,j)≥0

ai,j ≤ lim sup
i∈N\S1

∑
j∈N:(i,j)∈K,Ψ(i,j)≥0

ai,j

≤ lim sup
i

ai,1 = lim
i
ai,1 = 0.(5.5)

Thus, all inequalities in (5.5) are equalities, and in particular it is

lim
i∈N\S1

∑
j∈N:(i,j)∈K,Ψ(i,j)≥0

ai,j = 0.(5.6)

Since lim sup
i∈S1

∑
j∈N:(i,j)∈K,Ψ(i,j)≥0

ai,j ≥ B0, from this and (5.6), it follows that N2 \K 6∈ FΨ
A . From

this and (A2), it follows that K 6∈ FΨ
A . So, any ultrafilter F of N contains at least a set not

belonging to FΨ
A , since it contains either K or N2 \K. This gets the claim.

We now define the modular and strong convergences in the context of the Ψ-A-statistical
convergence. In the following, G is a locally compact Hausdorff space satisfying the assump-
tions of Section 4, with the uniform structure U ⊂ 2G×G.

We say that a double sequence (fi,j)i,j of functions in L%(G) is stΨA-modularly convergent to
f ∈ L%(G) if there is a λ > 0 with

stΨA- lim
i
%[λ(fi,j − f)] = 0.

A double sequence (fi,j)i,j in L%(G) is stΨA-strongly convergent to f ∈ L%(G) if

stΨA- lim
i
%[λ(fi,j − f)] = 0

for every λ > 0.
For Ψ(i, j) = i − j, we obtain the corresponding notions for the “triangular” modular and

strong convergences.
Let T be a double sequence of linear operators Ti,j : D → L0(G), i, j ∈ N, with Cb(G) ⊂ D ⊂

L0(G). Here, the set D is the domain of the operators Ti,j .
We introduce now the following extension of the property (∗) for double sequences of posi-

tive linear operators. We say that the double sequence T , together with the modular %, satisfies
the property (∗) if there exist a subsetXT ⊂ D∩L%(G) with Cb(G) ⊂ XT and a positive real con-
stant N with Ti,jf ∈ L%(G) for any f ∈ XT and i, j ∈ N, and stTA- lim sup

i
%[τ(Ti,jf)] ≤ N%[τf ]

for every f ∈ XT and τ > 0.
The first Korovkin-type theorem in the present setting is the following (see [6]).

Theorem 5. Let % be a strongly finite, monotone and Q-quasi convex modular. Assume that er and ar,
r = 0, . . . ,m, satisfy (P1) and (P2). Let Ti,j , i, j ∈ N, be a double sequence of positive linear operators
with property (∗). If (Ti,jer)i,j is stΨA-modularly convergent to er in L%(G) for each r = 0, . . . ,m, then
(Ti,jf)i,j is stΨA-modularly convergent to f in L%(G) for every f ∈ Cc(G).

If (Ti,jer)i,j is stΨA-strongly convergent to er, r = 0, . . . ,m inL%(G), then (Ti,jf)i,j is stΨA-strongly
convergent to f in L%(G) for every f ∈ Cc(G).

Employing Theorem 5, we can prove the following general Korovkin-type theorem in mod-
ular spaces (see [6]).
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Theorem 6. Let % be a monotone, strongly finite, absolutely continuous and Q-quasi convex modular
on L0(G), and Ti,j , i, j ∈ N be a double sequence of positive linear operators fulfilling (∗). If (Ti,jer)i,j
is stΨA-strongly convergent to er, r = 0, . . . ,m in L%(G), then (Ti,jer)i,j is stΨA-modularly convergent
to f in L%(G) for every f ∈ L%(G) ∩ D with f − Cb(G) ⊂ XT , where D and XT are as before.

The theory developed in this section can be applied to two-dimensional Mellin-type integral
operators for functions defined in compact intervals of R2. As example, let Lϕ(G) be an Orlicz
space generated by the convex ϕ-function ϕ and G = [0, 1]2.

For every (x1, x2) ∈ [0, 1]2, let e0(x1, x2) = a3(x1, x2) = 1, e1(x1, x2) = x1, e2(x1, x2) = x2,
e3(x1, x2) = a0(x1, x2) = x2

1 + x2
2, a1(x1, x2) = −2x1, a2(x1, x2) = −2x2. For each i, j ∈ N, set

Ai,j =
[1

i
, 1
]
×
[1

j
, 1
]
,

ci,j =

∫ 1

0

∫ 1

0

t1 t2(t21 + t22)i+jχAi,j (t1, t2) dt1 dt2, di,j =
1

ci,j
.(5.7)

For every i, j ∈ N, t1, t2 ∈ [0, 1], define Ki,j(t1, t2) = di,jt1 t2(t21 + t22)i+jχAi,j
(t1, t2). Moreover,

let C1 be the Cesàro matrix. Finally, let us consider the double sequences of operators defined
by

(Mi,jf)(x1, x2) =

∫ 1

0

∫ 1

0

Ki,j(t1, t2)f(t1x1, t2x2) dt1 dt2, f ∈ C([0, 1]2), i, j ∈ N.

It is proved that the operators Mi,j satisfy all the assumptions of Theorem 5.

6. KOROVKIN THEOREMS WITH RESPECT TO ABSTRACT CONVERGENCE

In this section, we extend the results of the previous sections to abstract convergences, in-
cluding filter and triangular matrix statistical convergences. In [17], Theorems 3, 4, 5 and 6
were generalized by considering an axiomatic abstract convergence, defined as follows (see
also [14]).

Let T be the set of all real-valued sequences (xn)n. A convergence is a pair (S, `), where S is
a linear subspace of T and ` : S → R is a function, satisfying the following axioms.

(a) `((a1 xn+a2 yn)n) = a1 `((xn)n)+a2 `((yn)n) for every pair of sequences (xn)n, (yn)n ∈
S and for each a1, a2 ∈ R (linearity).

(b) If (xn)n, (yn)n ∈ S and xn ≤ yn definitely, then `((xn)n) ≤ `((yn)n) (monotonicity).
(c) If (xn)n satisfies xn = l definitely, then (xn)n ∈ S and `((xn)n) = l.
(d) If (xn)n ∈ S, then (|xn|)n ∈ S and `((|xn|)n) = |`((xn)n)|.
(e) Given three sequences (xn)n, (yn)n, (zn)n, satisfying (xn)n, (zn)n ∈ S, `((xn)n) =

`((zn)n) and xn ≤ yn ≤ zn definitely, then (yn)n ∈ S.
Note that S is the space of all convergent sequences, and ` is the "limit" according to this

approach.
We now give the axiomatic definition of the operators "limit superior" and "limit inferior"

associated with a convergence (S, `).
Let T , S be as above. We define two functions `, ` : T → R̃, satisfying the following axioms:

(f) If (xn)n, (yn)n ∈ T , then `((xn)n) ≤ `((xn)n) and `((xn)n) = −`((−xn)n).
(g) If (xn)n ∈ T , then

(i) `((xn + yn)n) ≤ `((xn)n) + `((yn)n) (subadditivity);
(ii) `((xn + yn)n) ≥ `((xn)n) + `((yn)n) (superadditivity).

(h) If (xn)n, (yn)n ∈ T and xn ≤ yn definitely, then `((xn)n) ≤ `((yn)n) and `((xn)n) ≤
`((yn)n) (monotonicity).
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(j) A sequence (xn)n ∈ T belongs to S if and only if `((xn)n) = `((xn)n).

It is not difficult to check that theF-limit superior and theF-limit inferior defined in (4.3) fulfill
the above axioms (f)-(j) (see also [22, Theorems 3 and 4]).

Now, we define the modular and strong convergences in this setting.
A sequence (fn)n of functions in Lρ(G) is (`)-modularly convergent to f ∈ Lρ(G) if there is a

positive real number λ such that

(`) lim
n
ρ[λ(fn − f)] = 0.

A sequence (fn)n in Lρ(G) is (`)-strongly convergent to f ∈ Lρ(G) if

(`) lim
n
ρ[λ(fn − f)] = 0 for all λ > 0.

The Korovkin-type theorems obtained in the context of this abstract axiomatic convergence
are the following.

Theorem 7. ([17, Theorem 3.2]) Let ρ be a strongly finite, monotone and Q-quasi convex modular.
Assume that er and ar, r = 0, . . . ,m, satisfy (P1) and (P2). Let (Tn)n be a sequence of positive
linear operators satisfying property (∗). If (Tner)n is (`)-modularly convergent to er in Lρ(G) for each
r = 0, . . . ,m, then (Tnf)n is (`)-modularly convergent to f in Lρ(G) for all f ∈ Cc(G).

If (Tner)n is (`)-strongly convergent to er, r = 0, . . . ,m in Lρ(G), then (Tnf)n is (`)-strongly
convergent to f in Lρ(G) for every f ∈ Cc(G).

Theorem 8. ([17, Theorem 3.3]) Let ρ be a monotone, strongly finite, absolutely continuous and Q-
quasi convex modular on L0(G), and (Tn)n be a sequence of positive linear operators satisfying (∗).
If (Tner)n is (`)-strongly convergent to er, r = 0, . . . ,m in Lρ(G), then (Tner)n is (`)-modularly
convergent to f in Lρ(G) for every f ∈ Lρ(G) ∩ D with f − Cb(G) ⊂ XT , where D and XT are as
above.

Now, we give an example of convergence, which satisfies axioms (a)-(j) introduced in this
section, but is not generated by any (free) filter (see also [7, Section 6]).

A sequence (xn)n in R is almost convergent to x0 ∈ R (shortly, (A) lim
n
xn = x0) if

lim
n

xm+1 + xm+2 + . . .+ xm+n

n
= x0

uniformly with respect to m ∈ N. It is not difficult to check that almost convergence satisfies
axioms (a)-(j).

Let F be any fixed free filter of N. A function f : R → R is F-continuous at x0 ∈ R if
(F) lim

n
f(xn) = f(x0) whenever (F) lim

n
xn = x0, and isA-continuous at x0 ∈ R if (A) lim

n
f(xn) =

f(x0) whenever (A) lim
n
xn = x0. In [35, Proposition 3.3] it is shown thatF-continuity is equiva-

lent to usual continuity, while in [19, Theorem 1] it is proved that every (A)-continuous function
at any fixed point x0 is linear. Thus, the concepts of (A)- and F-continuity do not coincide, and
therefore almost convergence is not generated by any free filter.

As a final remark, note that in [6, Section 4] and [17, Theorems 3.4 and 3.5] some results
about the rate of modular convergence were also stated, using suitable moduli of continuity,
when G is a metric space (G, d) satisfying a suitable assumption, which is naturally verified
in every Euclidean space. Following an approach already used in [7], it is also possible to
obtain a version of the previous theorems for not necessarily positive linear operators, in certain
particular situations (see [6, Theorem 12] and [17, Theorem 4.3]).
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