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Çağatay Çetinkaya *
Department of Accounting and Taxation

Bingöl University
12000, Bingöl, Turkey

Abstract: This paper considers a simple step stress accelerated life test for units modeled by a length-biased
exponential distribution. The cumulative exposure model of time to failure holds in this accelerated life test
model. The optimal test plan is constructed by determining the optimal stress change time. Parameters of the
model are estimated by using the maximum likelihood estimation method. The corresponding approximate
confidence intervals are obtained by using the asymptotic normality features of the maximum likelihood
estimators. Theoretical outcomes are illustrated with simulation studies and a real data example.
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1. Introduction
Studies based on the accelerated life tests (ALT) have been popular since they let the experi-

menters control the higher stress levels to be used for components or units in the life tests. It is
clear that long lifetimes of highly reliable products make observing the experiment difficult. In such
cases, ALT approaches provide higher than usual stress conditions for units/components. These
tests are used for estimation of the lifetime of highly reliable components within an acceptable
period (for more details Nelson [14] is recommended to the readers). Various types of ALT plans
take part in reliability theory such as constant stress, step stress or progressive stress ALTs. These
plans differ from each other depending on how to apply stresses to components. In a constant stress
plan, the stress applied to a component does not vary with time. In contrast, there is a time point
in step stress and more time point to increase stress levels in progressively stress. Studies on these
different cases of ALTs take part in various studies by various authors.
Nelson [13] introduced the step-stress ALTs that allows test conditions to change during testing.
Among step stress experiments, the cumulative exposure model (CEM) is one of the most useful
and used models. A simple step stress model starts with initial low stress and if it does not fail
in a predetermined time point, τ , the stress level is increased. Simple step stress models contain
only one stress change point. The CEM defined by Nelson [13] for simple step-stress testing with
stresses and is given as

F0(t) =

{
F1(t) , t≤ τ
F2(t− τ + τ

′
) , t≥ τ (1.1)

where τ
′

(the equivalent start time) is the solution of F1(τ) = F2(τ
′
).

The ALT plans are considered for many different probability distributions by various authors. For
instance; Miller and Nelson [12] considered optimum ALT plan under exponentially distributed life-
times. Chung and Bai [4] studied ALT for log-normal lifetime distributions, Ebrahem and Al-Masri
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[6] considered ALT for log-logistic distribution, Ma and Meeker [11] explored ALT for log-location-
scale distributions, Saxena et al. [16] considered ALT for Rayleigh distribution, Haghighi [10]
considered ALT for an extension of the exponential distribution, Abbas and Firdos [1] studied ALT
for Fréchet distribution. For more probability distribution, the literature list can be extended. On
the other hand, ALT plans mostly are also considered for censored cases. Based on many different
censoring schemes, ALT plans are considered for different probability models.
It is known that several probability models have been extensively used over the past decade in
describing lifetime data. The exponential distribution is one of the major distributions for modeling
lifetime datasets. For this purpose, many generalizations and modifications of exponential distri-
bution take part in the literature. For example, generalized exponential distribution by Gupta and
Kundu [9] and exponential-geometric distribution by Adamidis and Loukas [2] and etc. Length-
biased distributions have great importance in reliability, biomedicine, and ecology among other
distributions due to their greater flexibility in modeling data in different areas such as lifetime
analysis, engineering, economics, finance, demography, actuarial and medical sciences (Akhter et al.
[3]). Recently, Dara and Ahmed [5] proposed a new extension of exponential distribution denoted
by “moment exponential distribution”. Then, it is called as length-biased exponential (LBE) dis-
tribution by some authors.
The probability density (pdf) and distribution (cdf) function of the LBE distribution are given as

f(t) =
t

θ2
exp

{
− t
θ

}
, x > 0, θ > 0 (1.2)

F (t) = 1−
[
1 +

t

θ

]
exp

{
− t
θ

}
(1.3)

where θ is the scale parameter.

The LBE distribution has never been studied for any ALT plans before. In this study, we aimed
to obtain parameter estimation of LBE distribution under simple step- stress cumulative exposure
model. Maximum likelihood estimation (MLE) method is used to obtain point estimates and their
credible intervals. For this purpose, in Section 2, we presented the model description. Following,
MLE and approximate confidence intervals are obtained in Section 3. An optimization criterion
to obtain optimum stress change time and its applications are given in Section 4. The simulation
studies and a real data example are given to illustrate the theoretical outcomes in Sections 5 and
6, respectively.

2. Model Description
The lifetime of a test unit or component follows a LBE distribution under any constant stress. We

assume that the scale parameter of the distribution is a log-linear function of stress. The following
assumptions are provided for a LBE distributed lifetime units.
• Test procedure is done at stresses S1 and S2(S1 <S2) levels.
• Under any level of stress, the lifetime of a test unit follows a LBE distribution with the given

cdf as

Fi(t) = 1−
[
1 +

t

θi

]
exp

{
− t

θi

}
• The scale parameter θi is the log-linear function of stresses as log θi = β0 +β1Si where i= 1,2,

β0 and β1(< 0) are unknown parameters depending on the nature of the product and the method
of the test.
• All test units are independently and identically distributed variables from the LBE distribu-

tion.
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• In this test, the cumulative exposure model which is defined by Nelson [14] for the simple
step-stress testing with stresses S1 and S2 is used.
• ni failure times tij, j = 1,2, · · · , ni of test units are observed under test operation at stress level

Si, i= 1,2.
Based on the given assumptions above, length-biased exponential cumulative exposure (LBECE)
model is given as follows. Firstly, the equivalent start time τ

′
for the LBECE model which is the

solution of F1(τ) = F2(τ
′
) is equal to

τ
′
=

(
θ2
θ1

)
τ

Then, by replacing τ
′

in (1) the cdf of a test unit is obtained as

F0(t) =

{
1−

[
1 + t

θ1

]
exp
{
− t
θ1

}
, t≤ τ

1−
[
1 + t−τ

θ2
+ τ

θ1

]
exp
{
− t−τ

θ2
− τ

θ1

}
, t≥ τ (2.1)

and the pdf is given as

f0(t) =

{
t
θ21
exp
{
− t
θ1

}
, t≤ τ

θ1t+(θ2−θ1)τ
θ1θ

2
2

exp
{
− t−τ

θ2
− τ

θ1

}
, t≥ τ (2.2)

3. Maximum Likelihood Estimation
This section considers obtaining MLEs of model parameters. Let tij denotes the observed failure

time of a test component j under i−th stress level. Also, n1 be the number of components failed
at stress S1 and n2 at stress S2. Corresponding likelihood function on the observed sample is given
as

L(θ) =

n1∏
j=1

f1(t1j, θ)

n2∏
j=1

f2(t2j, θ) (3.1)

where j = 1,2, · · · , ni and i = 1,2, f1(.) and f2(.) denotes the cases of the pdf due to the stress
levels. By replacing Equation (2.2) in Equation (3.1) we obtain the likelihood function as

L(θ1, θ2) =
1

θ2n1+n21

1

θ2n22

n1∏
j=1

t1jexp

{
− t1j
θ1

} n2∏
j=1

(
θ1t2j + (θ2− θ1)τ

)
×exp

{
− t2j − τ

θ2
− τ

θ1

} (3.2)

and the log-likelihood function is obtained as

`(θ1, θ2) =− (2n1 +n2) log θ1− 2n2 log θ2 +

n1∑
j=1

log(t1j)−
n1∑
j=1

t1j
θ1

+

n2∑
j=1

log
(
θ1t2j + (θ2− θ1)τ

)
−

n2∑
j=1

t2j − τ
θ2

− τn2

θ1

(3.3)

By replacing the relation log θi = β0 +β1Si in log-likelihood function, we obtain

`(β0, β1) =− 2nβ0− 2β1(n1S1 +n2S2)−n2(β0 +β1S1) +

n1∑
j=1

log(t1j)

− e−(β0+β1S1)
n1∑
j=1

t1j +

n2∑
j=1

log
[
e(β0+β1S1)(t2i− τ) + e(β0+β1S2)τ

]
− e−(β0+β1S2)

n2∑
j=1

(t2j − τ)−n2τe
−(β0+β1S1)

(3.4)
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where n= n1 +n2. To obtain the MLEs of the parameters, denoted by β̂0 and β̂1 we should equate
the partial derivates of `(β0, β1) to zero with respect to β0 and β1 respectively as given in the
following

∂`

∂β0

=−2n−n2 + e−(β0+β1S1)
n1∑
j=1

t1j + e−(β0+β1S2)
n2∑
j=1

(t2j − τ) +n2τe
−(β0+β1S1) (3.5)

and

∂`

∂β1

=− 2(n1S1 +n2S2)−n2S1 +S1e
−(β0+β1S1)

n1∑
j=1

t1j +S2e
−(β0+β1S2)

n2∑
j=1

(t2j − τ)

+S1n2τe
−(β0+β1S1) +

n2∑
j=1

S1e
(β0+β1S1)(t2j − τ) +S2e

(β0+β1S2)τ

e(β0+β1S1)(t2j − τ) + e(β0+β1S2)τ

(3.6)

These non-linear equations can not be solved analytically and some iterative methods are needed.
Thus, approximate solutions of the system of these non-linear equations are the MLEs of the β0

and β1.

Approximate confidence intervals for MLEs of the parameters can be obtained by using the
inverse of the asymptotic Fisher information matrix. The inverse Fisher information matrix is given
as follows

F−1 =

 −E
[
∂2`
∂β20

]
−E
[

∂2`
∂β0∂β1

]
−E
[

∂2`
∂β1∂β0

]
−E
[
∂2`
∂β21

]

−1

(β0,β1)=(β̂0,β̂1)

=

[
V ar( β̂0) Cov(β̂0β̂1)

Cov(β̂1β̂0) V ar(β̂1)

]

where
∂2`

∂β2
0

=−e−(β0+β1S1)
n1∑
j=1

t1j − e−(β0+β1S2)
n2∑
j=1

(t2j − τ)−n2τe
−(β0+β1S1)

∂2`

∂β0∂β1

=−S1e
−(β0+β1S1)

n1∑
j=1

t1j −S2e
−(β0+β1S2)

n2∑
j=1

(t2j − τ)−n2S1τe
−(β0+β1S1)

∂2`

∂β2
1

=−S2
1e
−(β0+β1S1)

n1∑
j=1

t1j −S2
2e
−(β0+β1S2)

n2∑
j=1

(t2j − τ)−n2S
2
1τe

−(β0+β1S1)

+(S1−S2)
2e(β0+β1S1)e(β0+β1S2)τ

n2∑
j=1

t2j − τ[
e(β0+β1S1)(t2j − τ) + e(β0+β1S2)τ

]2
Thus,

−E
[
∂2`

∂β2
0

]
= n1γ

(
3, τ/θ1

)
+n2

[
Γ(3, τ/θ1)− (τ/θ1)Γ(2, τ/θ1)

]
+n2τ/θ1

−E
[

∂2`

∂β0∂β1

]
= S1n1γ

(
3, τ/θ1

)
+S2n2

[
Γ(3, τ/θ1)− (τ/θ1)Γ(2, τ/θ1)

]
+n2S1τ/θ1

−E
[
∂2`

∂β2
1

]
= S2

1n1γ
(
3, τ/θ1

)
+S2

2n2

[
Γ(3, τ/θ1)− (τ/θ1)Γ(2, τ/θ1)

]
+n2S

2
1τ/θ1

− (S1−S2)
2τn2

θ1

{
e−τ/θ1

(
1−

√
τ

θ1
W− 1

2 ,0

(
θ1/τ

))}
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where θ1 = eβ0+β1S1 and θ2 = eβ0+β1S2 . Also, γ(a, b) denotes the lower incomplete gamma function
and Γ(a, b) denotes the upper incomplete gamma function as given in the following

γ(a, b) =

∫ b

0

ta−1e−tdt and Γ(a, b) =

∫ ∞
b

ta−1e−tdt

Further, the expression Wλ,µ(z) in −E
[
∂2`
∂β21

]
denotes the Whittaker functions and used for the

solution of the integral
∫∞
τ/θ1

u−1e−udu (Gradshteyn and Ryzhik [8], Eq. 3.381.6, pg. 346).
It is knows that the MLEs under some regularity conditions are consistent and normally distributed
(Godambe [7]). Thus, the a 100(1 − δ)% asymptotic confidence intervals of β0 and β1 can be
constructed by

β̂0∓Z δ
2

√
V ar(β̂0) and β̂1∓Z δ

2

√
V ar(β̂1)

where Zδ is 100 δth percentile of standard normal distribution N(0,1).

4. Optimal Test Plan
The optimal test plan emphasizes an optimum stress change timepoint τ which determines the

lifetime of lower stress level. In simple step stress accelerated life test plan, optimal stress change
time is determined by minimizing the asymptotic variance of MLEs of a given log 100p-th percentile
at the design stress level S0 (Ebrahem and Masri [6]). The 100p-th percentile of the length-biased
exponential distribution, denoted by Qp(S0) at the design stress level S0 is obtained as

Qp(S0) =−eβ0+β1S0
[
1 +W−1

(
p− 1

e

)]
where W−1(.) is the negative branch of the Lambert W function (i.e., the solution of the equation
W (z)eW (z) = z). The asymptotic variance (AV) of the MLEs of the log 100p-th percentile at the
design stress level can be obtained by using

AV
{

log
[
Q̂p(S0)

]}
=AV

{
−β̂0− β̂1S0− log

[
1 +W−1

(
p− 1

e

)]}
=HΣHT

where

H =

[
∂ log

[
Q̂p(S0)

]
∂β̂0

∂ log
[
Q̂p(S0)

]
∂β̂1

]
=
[
− 1 −S0

]
and Σ is the variance-covariance matrix which is obtained by using the inverse of the Fisher
information matrix. Thus, the asymptotic variance of the MLEs of the log 100p-th percentile at
the design stress level can be obtained as follows

AV
{

log
[
Q̂p(S0)

}
=Σ11 + 2S0Σ12 +S2

0Σ22

The Σij values are already given in Section 3. Consequently, the optimal stress change time, denoted
by τ ∗ is the τ value that minimizing the AV

{
log
[
Q̂p(S0)

}
. The NMinimize option of Mathematica

11 is a very useful tool to obtain the optimal τ value that minimizing the asymptotic variance.

We performed a small numerical study to observe the existence and evaluate the optimal stress
change time with minimizing AV

{
log
[
Q̂p(S0)

}
. For given values of design stress level S0 and

parameters β0 and β1, different combinations of two levels of stress S1 and S2 as (S1 < S2), we
obtained the optimal stress-change times which provide variance optimality and reported in Table
1. We used the NMinimize option of Mathematica 11 for calculations.
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Table 1. Optimal time, τ∗, changing stress for s0 = 0.25, β0 = 2.5 and β1 = −1.5

s2
s1 1.25 1.50 1.75 2.00 2.50

0.30 5.55 6.46 7.32 8.15 9.74
0.40 4.38 5.17 5.92 6.63 7.99
0.50 3.44 4.12 4.77 5.38 6.54
0.75 1.78 2.28 2.74 3.16 3.96
1.00 0.80 1.19 1.52 1.82 2.37

It is observed that the optimal stress change time increases as parallel to increasing S2 stress

level when S1 is fixed. On the other hand, decreases are observed on optimal stress change time in

parallel to increasing on S1 stress level when S2 is fixed. These results are reasonable and acceptable.

5. Simulation Study

In this section, we provide a simulation study to illustrate the theoretical outcomes. We per-

formed simulations and obtained the MLEs of the parameters and their corresponding confidence

intervals.

We take the parameter values as β0 = 2.5 and β1 = −1.5, different stress levels as (S1, S2) =

(0.50,1.50), (S1, S2) = (0.50,2.00), (S1, S2) = (0.75,1.50) and (S1, S2) = (0.75,2.00) and the stress

change times τ as 4.12,5.38,2.28 and 3.16, respectively. We consider different sample sizes as

n= 25,50,100,250,500.

We first generate random samples of the LBECE model from the cdf in Eq. (2.1) with size n. Then,

we generate 10 000 samples with each size n. We use R software (Team R.C. [15]) to perform this

simulation. We obtained the maximum likelihood estimates of β0 and β1 with their mean squared

errors (MSE), relative errors (RE), the %95 approximate confidence intervals (CI) and coverage

probabilities (CP). We presented simulation results in Tables 2,3,4 and 5. The MSEs and REs for

an arbitrary parameter can be obtained as follows

MSEξ =Eξ[(ξ̂− ξ)2] and REξ =
|ξ− ξ̂|
ξ

100%

We observed that both estimates are obtained quite close to their actual values. In parallel to

increase sample sizes, estimations are almost same with the actual values. As expected, MSEs and

REs are getting smaller at the same time. Lengths of the approximate confidence intervals also

decrease with increasing sample sizes. Coverage probabilities of the CIs have quite close to their

actual value 0.95. In all cases of stress levels, consistent results are obtained. It is known that using

the optimal stress change time makes estimations better than using arbitrary stress change times.

However, it is clearly seen that differences between estimates for our examples are not very large.

Of course, various combinations can be worth trying according to the needs of many engineering

problems.
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Table 2. The MLEs, MSEs, REs and approximate CIs of β0 and β1 based on 3000 replications.(β0 = 2.5, β1 =
−1.5, τ = 4.12 and S1 = 0.50, S2 = 1.50)

n Parameter MLE MSE RE Lower CI Upper CI CP

25 β0 2.55967 0.00356 2.38671 1.58066 3.53867 96.33

β1 -1.55907 0.00349 3.93796 -2.36209 -0.75605 96.65

50 β0 2.55195 0.00270 2.07806 1.87081 3.23310 96.48

β1 -1.54341 0.00188 2.89384 -2.10417 -0.98265 96.43

100 β0 2.52732 0.00075 1.09283 2.05321 3.00143 96.29

β1 -1.52281 0.00052 1.52069 -1.91407 -1.13155 96.10

250 β0 2.50917 0.00008 0.36662 2.21222 2.80611 95.54

β1 -1.50768 0.00006 0.51176 -1.75317 -1.26218 95.93

500 β0 2.50381 0.00001 0.15248 2.2945 2.71312 95.88

β1 -1.50337 0.00001 0.22498 -1.67651 -1.33024 96.04

Table 3. The MLEs, MSEs, REs and approximate CIs of β0 and β1 based on 3000 replications.(β0 = 2.5, β1 =
−1.5, τ = 5.38 and S1 = 0.50, S2 = 2).

n Parameter MLE MSE RE Lower CI Upper CI CP

25 β0 2.55861 0.00343 2.34421 1.81832 3.29889 97.01

β1 -1.54283 0.00183 2.85562 -2.04983 -1.03584 97.17

50 β0 2.53178 0.00101 1.27110 2.01902 3.04453 96.73

β1 -1.52261 0.00051 1.50708 -1.87412 -1.17109 96.63

100 β0 2.51489 0.00022 0.59551 2.15599 2.87379 96.25

β1 -1.51008 0.00010 0.67184 -1.75649 -1.26366 96.65

250 β0 2.50750 0.00006 0.30019 2.28171 2.73330 96.11

β1 -1.50571 0.00003 0.38041 -1.66080 -1.35061 96.54

500 β0 2.50312 0.00001 0.12484 2.3438 2.66244 95.87

β1 -1.50195 0.0000∗ 0.12979 -1.61142 -1.39247 96.33

(* denotes smaller values than ×10−5)
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Table 4. The MLEs, MSEs, REs and approximate CIs of β0 and β1 based on 3000 replications.(β0 = 2.5, β1 = 1.5, τ =
2.28 and S1 = 0.75, S2 = 1.5)

n Parameter MLE MSE RE Lower CI Upper CI CP

25 β0 2.61059 0.01223 4.42372 1.06294 4.15825 97.85

β1 -1.58820 0.00778 5.88030 -2.76213 -0.41428 98.51

50 β0 2.61029 0.01216 4.41170 1.52793 3.69266 96.98

β1 -1.58200 0.00672 5.46663 -2.40209 -0.76191 96.96

100 β0 2.54484 0.00201 1.79351 1.80052 3.28915 95.86

β1 -1.53358 0.00113 2.23876 -2.09971 -0.96746 95.96

250 β0 2.51936 0.00037 0.77450 2.05444 2.98428 95.88

β1 -1.51444 0.00021 0.96248 -1.86853 -1.16034 96.11

500 β0 2.50866 0.00007 0.34635 2.18138 2.83594 95.71

β1 -1.50673 0.00005 0.44882 -1.75615 -1.25732 95.85

Table 5. The MLEs, MSEs, REs and approximate CIs of β0 and β1 based on 3000 replications.(β0 = 2.5, β1 = 1.5, τ =
3.16 and S1 = 0.75, S2 = 2)

n Parameter MLE MSE RE Lower CI Upper CI CP

25 β0 2.59675 0.00936 3.87000 1.59086 3.60264 98.14

β1 -1.56215 0.00386 4.14333 -2.19076 -0.93354 97.94

50 β0 2.55287 0.00280 2.11473 1.85966 3.24607 96.58

β1 -1.53325 0.00111 2.21657 -1.96787 -1.09863 96.40

100 β0 2.52397 0.00057 0.95869 2.04077 3.00716 96.14

β1 -1.51480 0.00022 0.98642 -1.81849 -1.21110 9627

250 β0 2.51157 0.00013 0.46271 2.20816 2.81497 95.96

β1 -1.50817 0.00007 0.54448 -1.69906 -1.31727 96.27

500 β0 2.50405 0.00002 0.16189 2.29010 2.71800 95.56

β1 -1.50243 0.00001 0.16186 -1.63711 -1.36775 96.02

6. Real Data Example
In this section, a real data set is presented to illustrate the theoretical outcomes. We used the data

set of the amount of annual rainfall (in inches, from 1984 to 2008) recorded at the Los Angeles Civic
Center that is available on the website of Los Angeles Almanac: www.laalmanac.com. Recently,
Tarvirdizade and Ahmadpour [17] were used this data set in the reliability context. The data set
is given as in the following;

12.82,17.86,7.66,2.48,8.08,7.35,11.99,21.00,7.36,8.11,24.35,12.44,12.40
31.01,9.09,11.57,17.94,4.42,16.42,9.25,37.96,13.19,3.21,13.53,9.08
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We fit this data set to LBE distribution and we obtain MLE of the scale parameter as θ̂= 6.6114.
The corresponding Kolmogorov-Smirnov test statistics and associated p-values are obtained 0.16
and 0.915. Therefore, we can reject the null hypothesis that this dataset comes from the LBE
distribution. Also, the estimated density and the empirical cdf plots support these observations
(Figure 1). Then, we considered different stress levels S1, S2 and stress change times τ to exemplify
our findings.
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Figure 1. Estimated density and empirical cdf for real-data example fitted by the LBE distribution.

Table 6. Parameter estimates and their approximate confidence intervals for the real dataset.

S1 S2 τ β̂0 β̂1 θ̂1 θ̂2

0.5 1.5 7.5 2.4429 (1.7592;3.1266) -0.5342 (-1.1007;0.0324) 8.8096 5.1639

12.5 1.9753 (1.4205;2.5302) -0.1141 (-0.7407;0.5125) 6.8092 6.0749

15 1.8768 (1.3144;2.4392) -0.0172 (-0.6987;0.7331) 6.5890 6.7034

0.5 2 7.5 2.3543 (1.7556;2.9529) -0.3564 (-0.7341; 0.0213) 8.8118 5.1629

12.5 1.9564 (1.4891;2.4236) -0.0764 (-0.4941;0.3412) 6.8085 6.0711

15 1.8796 (1.4172;2.3419) -0.0118 (-0.4656;0.4892) 6.5895 6.7076

0.75 1.5 7.5 2.7112 (1.7614;3.6610) -0.7131 (-1.4686;0.0423) 8.8141 5.1629

12.5 2.0313 (1.1905;2.8722) -0.1513 (-0.9868;0.6842) 6.8063 6.0761

15 1.8681 (0.9765;2.7597) -0.0233 (-0.9314;0.9780) 6.5900 6.7061

0.75 1.5 7.5 2.4974 (1.7614;3.2334) -0.4279 (-0.8812;0.0254) 8.8147 5.1631

12.5 1.9866 (1.3768;2.5964) -0.0916 (-0.5927;0.4096) 6.8071 6.0710

15 1.8758 (1.2502;2.5014) -0.0129 (-0.5596;0.5854) 6.5897 6.6969

It is observed that estimates are getting closer to its MLE value under the normal conditions
when stress change time equal to 15 for all stress levels. Similarly, estimations are worsening with
decreasing stress change time. The mean of this real data set is 13.22. We may conclude that close
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values of stress change time to the mean of the sample help to obtain better estimates for these
determined stress levels.

7. Conclusions
The importance of length-biased distributions in especially reliability studies and their greater

flexibility in modeling data in different areas such as lifetime data analysis, engineering, actuarial
etc. inspired to consider accelerated life test plans under this distribution. Therefore, the length-
biased exponential distribution is used which is one of the most used length-biased distributions in
the literature. As a first attempt based on LBE distribution, we considered a cumulative exposure
model under simple step stress accelerated life test.
We see that maximum likelihood estimations are obtained using some iterative methods as in many
inference problems. Therefore, approximate confidence intervals are used in place of exact ones.
Nevertheless, performances of the estimator and its confidence intervals are quite well performed.
In addition, different combinations of the stress levels are compared with simulations and real data
examples. We see that for the high stress with fixed level, results for lower stress level gives better
result than higher ones. Similarly, results for higher stress level gives better result in the case of
fixed lower stress level. Even so, there are not very important differences between estimates for our
combinations. We also obtained optimal stress change times to construct the best ALT plans for
this cumulative exposure model. All simulations and real data studies were applied according to
this optimal plan.
As open problems, this ALT plan can be extended for cumulative exposure models under multiple
stress levels. Also, censored cases can be considered for these plans.
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