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Abstract   

In this study, a distribution free new statistic is introduced to test the equality of locations 

against the umbrella alternative hypotheses. The Shan test known for the ordered 

alternatives hypotheses is arranged for the umbrella alternative hypotheses. This statistic 

can be considered as an extension of the sign and Mann-Whitney statistics. Using a 

comprehensive simulation design, the proposed test was compared with the 

Hettmansperger and Norton and, Mack-Wolfe tests according to the criteria of the power 

and type I error rate of the test. In the simulation outcomes, it was seen that the robustness 

condition for Bradley's type I error rate were ensured for all tests. The power comparison 

outcomes also showed that the proposed test is more powerful than the other tests. 
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1. INTRODUCTION 

 

In literature, while the equality of location parameters is tested, the alternative hypothesis may have a 

certain pattern structure. Studies that have alternative hypotheses with a specific pattern structure are widely 

used in many areas such as health, economics, agriculture, behavioral sciences. There may be many research 

problems where such an alternative hypothesis is appropriate. For example, studies such as in the field of 

health, drug screening studies, dose-response trials, dose-finding trials, life-testing experiments, age-related 

responses are related to alternative hypotheses with a specific pattern structure. Similarly, when the toxin 

substance is applied, there is an increase in the number of organisms but when the dose of the toxin 

substance exceeds a certain amount, it is observed that they decrease or disappear. Such a dose-response 

study requires the alternative hypothesis to have a certain pattern as increasing to a certain point and then 

decreasing. 

 

In the literature, there are two types of pattern structures such as ordered and umbrella alternatives for 

alternative hypotheses. Ordered alternative hypotheses are linear, concave, or convex structures where the 

location parameters with the lowest and high value are at the first and last level, or at the last and first level. 

For example, when the vector of location parameters is indicated by  the vectors such as (0,1,2,3), (5,4,3,2), 

(5,5,5,0), (0,0,0,5) and (0,1,1,5) state an ordered alternative hypothesis. While the first two of these vectors 

represent a linear ordered alternative, the third represents a concave ordered alternative. Furthermore, the 

last two vectors indicate a convex ordered alternative hypothesis. The JT test was first proposed by Terpstra 

[1] and Jonckheere [2] to test the null hypothesis of equality of location parameters against an ordered 

alternative hypothesis. Later, Chacko [3], Puri [4], May and Konkin [5], Odeh [6], Cuzick [7], 

Hettmansperger and Norton [8], Beier and Buning [9], Neuhäuser, et al. [10], Buning and Kossler [11], 
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Terpstra and Magel [12], Chang and Yen [13], Terpstra, et al. [14], Chang, et al. [15], Shan, et al. [16] and 

Gaur [17] developed alternative tests for ordered alternative hypothesis. 

 

On the other hand, the location parameter with the highest / low value for umbrella alternatives is at any 

level outside the first or last level. This level is called as a peak. For example, while the vector of location 

parameters are indicated by  ,  the vectors such as (0,1,3,2), (0,0,3,0), (1,3,5,0), (3,4,5,4) and (0,0,2,1) state 

an umbrella alternative hypothesis where  the peak is the level 3. In these alternative hypotheses, the 

location parameters before and after the peak may have a linear, concave or convex structure among 

themselves. As can be easily understood, ordered alternatives are a special form of umbrella alternatives. 

When the peak is first or last level, umbrella alternatives turn into ordered alternatives. Therefore, the some 

of the tests developed for umbrella alternatives are an extension of the proposed tests for ordered 

alternatives. For instance, the test proposed by Mack and Wolfe [18] for umbrella alternatives is an 

adaptation of the JT test proposed by Jonckheere [2] for ordered alternatives. Some of the tests proposed 

for ordered alternatives, but later adapted for umbrella alternatives were studied by Buning and Kossler 

[11], Kossler [19], Gaur, et al. [20]. Besides these, Shi [21], Cohen and Sackrowitz [22], Pan [23], Hartlaub 

and Wolfe [24], Hayter and Liu [25], Lee and Chen [26], Magel and Qin [27], Singh and Liu [28], Alvo 

[29], Bhat and Patil [30], Basso and Salmaso [31] studied on testing for umbrella alternatives. 

  

In this study, a test statistic that is adapted is proposed to test the null hypothesis against umbrella alternative 

hypothesis. This test statistic is an extension of the S test proposed by Shan, et al. [16], for ordered 

alternatives. Considering the studies regarding the comparison of the proposed tests for ordered alternatives 

in terms of power, it is observed that the S test gives better results in general [16, 32]. Based on this idea, 

the S test is adapted to the umbrella alternatives. 

  

The rest of this article is structured as follows. In section 2, some tests and the proposed test are introduced 

for umbrella alternatives. Section 3 includes the application of the proposed test on a real data. There is a 

comprehensive simulation study on the comparison of the proposed test and other tests based on type I error 

rate and power of test in the section 4. The final section is the conclusion. 

 

2. NONPARAMETRIC TESTS FOR UMBRELLA ALTERNATIVES 

 

Umbrella alternatives are widely used in research in many areas such as health, agriculture and economics. 

For example, in a health survey, it may be desirable to determine the optimal dose of a drug for a particular 

patient. The drug improves healing in patients up to a certain dose, but it can cause the worsening of 

thesepatients after the overdose. In such studies, the dose level at which healing is at its highest level is 

called as the peak. Similarly, an agriculturist can use umbrella alternatives to determine the most 

appropriate level of fertilizer. 

 

Let 1 2, ,...,
ii i inX X X , 1,...,i k  be random independent samples with size in  from k populations with the 

continuous distribution function ( ) (( ) / )i i iF x F x    , where i    and 0i   are the location 

and dispersion parameters, respectively. The total number of subjects in the study is n, with in subjects in 

the i.th sample, and iN n . The null hypothesis of the equality of location parameters and the umbrella 

alternative hypothesis are shown below 

 

0 1 2: ... kH       (1) 

 

and with at least one strict inequality 

 

1 1 2 1 1: ... ...p p p kH               (2) 
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The 1H hypothesis given in (2) is called as the umbrella alternative where the peak level is p , 1 p k  .  In 

this section, the two known tests to test the equality of locations against the umbrella alternative are 

introduced and a new test is proposed. 

 

2.1. Mack and Wolfe Test 

 

Mack and Wolfe [18] proposed a test that is an extension of the JT test proposed by Terpstra [1]and 

Jonckheere [2] for the testing of the equality of locations against the ordered alternative. When the 

alternative hypothesis has a certain pattern, the first test was proposed by Terpstra [1] and Jonckheere [2]. 

They developed a nonparametric test named the JT test for ordered alternatives. An ordered alternative that 

is frequently used in research in many areas such as umbrella alternative is shown below, with at least one 

strict inequality 

 

1 1 2: ... kH       (3) 

 

As can be easily seen, if the last level in umbrella alternative given in (2) is taken as the peak, i.e p k , 

the umbrella alternative turns into an ordered alternative. 

 

The statistic JT consist of the sum of the ( 1) / 2k k   Mann-Whitney statistics, i.e.,  

 
1

1 1

k k

ij

i j i

JT U


  

  (4) 

 

where  

 

1 1

( )
ji

nn

ij il jm

l m

U I X X
 

   (5) 

 

in  and jn  are the sample size for ith and jth populations, respectively and ( ) 1I    if   is true, and 0 

otherwise.  

 

It is known that the JT statistic have normal distribution under 0H . Mean and variance for this statistic are 

given as follows. 

 

2 2

1( )
4

k

i

i

N n

E JT 






 (6) 

 

and  

 

2 2

1

(2 3) (2 3)

( )
72

k

i i

i

N N n n

V JT 

  




 (7) 

 

where 1 2 ... kN n n n    .  

 

The Mack and Wolfe statistic is the sum of the Mann-Whitney statistics, which are defined separately for 

the levels to the left and right of the peak.  This statistic is called as the MW statistic, and is expressed as 

follows 
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1 1

1 1 1

p p k k

ij ji

i j i i p j i

MW U U
 

     

    (8) 

 

where ijU  is the Mann-Whitney statistic for ith and jth samples, respectively; and 

 

1 1

( )
ji

nn

ij ia jb

a b

U I X X
 

   (9) 

 

and 

 

1, X

1
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2

0, X

ia jb
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X

I X X

X



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



 (10) 

 

Under 0H , the mean and variance for this statistic are given as follows 

 

 

2 2 2 2
1 2

1

4

k

i p

i

N N n n

E MW 
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


 (11) 

 

and 
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 (12)

 
 

where 1

1

p

i

i

N n


 , 2

k

i

i p

N n


  and 
1

k

i

i

N n


 . The MW statistic converges to normal distribution with 

mean E(MW) and variance V(MW) [18]. 

 

2.2. Hettmansperger and Norton Test 

 

Hettmansperger and Norton [8] studied a general approach to develop a test for patterned alternatives. In 

this proposed approach for the testing of the null hypothesis against an ordered alternative, they considered 

situations where the peak is known and unknown. The null hypothesis for this test is as in (1), but the 

alternative hypothesis is different from that given in (2), and is given as follows 

 

1 0:
jj cH      (13) 

 

where 0  , 1,2,...,j k , and 

 

1 2 1 1... ...p p p kc c c c c c         (14) 
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are the constants indicating the umbrella pattern with p  peak. When the location parameters are different, 

Hettmansperger and Norton [8] suggested that the differences of  any two consecutive jc  constants be taken 

the equal if there is no information about jc  constants. 

 

Let ijR , 1,2,...,i k  and 1,2,..., ij n , denote the rank of ijX  in the combined data; iR be the mean of the 

ranks of the ith sample; and N be the size of the combined sample. To test the equality of locations against 

the umbrella alternative hypothesis, the HN statistic is given as follows [8] 

 

1/2
1 1

1/2
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 (15) 

 

where /i in N   and  
1 1

(2 )
p k

w i i

i i p

c i p i 
  

    .  

 

Under 0H , the HN statistic converges to normal distribution with zero mean and variance as follows. 
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2.3. Proposed Test 

 

Shan, et al. [16] proposed the S test based on the ranks to test the equality of locations against ordered 

alternatives. This statistic is defined as follows 

 
1

1 1

k k
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i j i

S D


  

  (17) 

 

where ( )il jmR R  are the ranks corresponding to the ( )il jmX X  observations in the combined data,  
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Under 0H ,the mean and variance of the statistic S are, respectively,  
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and  
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CovA and CovB in the above are calculated by the following formulas 

 
22 1
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N N
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 
  (22) 

 

and    

 
27 11 4

360

N N
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  
  (23) 

 

In this paper, we propose a new test statistic which is the sum of the S statistics defined separately for the 

levels to the right and left of the peak level. This new test statistic which is proposed for umbrella 

alternatives and called the SU is defined as follows 
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The SU statistics for levels to the left and right of the peak level are based on the following definitions, 

respectively. 
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Under 0H ,  the mean of the SU statistic is easily obtained as follows. 
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However, it is quite complicated to find the variance formula for this statistic. Because the variance formula 

of the SU statistic includes the variances of the 
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between these statistics. Therefore, the critical values for the SU test were obtained by the Monte Carlo 
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simulation study with the 10000 replications. These critical values for k = 3, 4 and =3,4,5in are given in 

Table 1. In addition, for the ease of calculating the test statistics, the necessary R codes are presented in the 

appendix. 

 

Table 1. Critical values based on Monte Carlo simulation for the SU test 
  (%)   (%)   (%)   (%) 

ni 1 5 10 ni 1 5 10 ni 1 5 10 ni 1 5 10 

(3,3,3) 81 60 53 (3,3,3,3) 168 141 125 (4,3,3,3) 195 163 148 (5,3,3,3) 229 193 169 

(3,3,4) 96 80 70 (3,3,3,4) 207 174 156 (4,3,3,4) 239 200 179 (5,3,3,4) 272 229 206 

(3,3,5) 122 96 87 (3,3,3,5) 249 209 190 (4,3,3,5) 282 239 214 (5,3,3,5) 320 270 243 

(3,4,3) 103 88 75 (3,3,4,3) 204 175 156 (4,3,4,3) 236 200 179 (5,3,4,3) 273 228 204 

(3,4,4) 135 110 96 (3,3,4,4) 248 212 192 (4,3,4,4) 285 243 216 (5,3,4,4) 327 272 245 

(3,4,5) 171 135 117 (3,3,4,5) 301 254 232 (4,3,4,5) 339 288 260 (5,3,4,5) 375 322 292 

(3,5,3) 138 114 101 (3,3,5,3) 246 209 189 (4,3,5,3) 277 236 216 (5,3,5,3) 319 268 240 

(3,5,4) 172 144 125 (3,3,5,4) 295 255 232 (4,3,5,4) 334 287 259 (5,3,5,4) 375 319 288 

(3,5,5) 207 172 153 (3,3,5,5) 361 307 278 (4,3,5,5) 400 337 308 (5,3,5,5) 443 374 341 

(4,3,3) 96 81 67 (3,4,3,3) 223 184 166 (4,4,3,3) 256 216 195 (5,4,3,3) 297 247 221 

(4,3,4) 122 96 87 (3,4,3,4) 266 225 203 (4,4,3,4) 301 257 234 (5,4,3,4) 348 297 266 

(4,3,5) 141 122 105 (3,4,3,5) 313 269 242 (4,4,3,5) 360 305 276 (5,4,3,5) 405 342 309 

(4,4,3) 135 110 96 (3,4,4,3) 264 226 202 (4,4,4,3) 309 255 231 (5,4,4,3) 351 293 265 

(4,4,4) 162 135 118 (3,4,4,4) 321 270 245 (4,4,4,4) 365 309 277 (5,4,4,4) 409 345 312 

(4,4,5) 200 162 143 (3,4,4,5) 373 321 293 (4,4,4,5) 421 361 329 (5,4,4,5) 477 400 365 

(4,5,3) 172 144 128 (3,4,5,3) 315 266 242 (4,4,5,3) 365 304 274 (5,4,5,3) 403 343 309 

(4,5,4) 207 173 153 (3,4,5,4) 373 325 291 (4,4,5,4) 421 359 330 (5,4,5,4) 468 404 364 

(4,5,5) 248 206 185 (3,4,5,5) 444 381 347 (4,4,5,5) 492 425 381 (5,4,5,5) 548 470 425 

(4,3,3) 96 80 70 (3,5,3,3) 274 233 211 (4,5,3,3) 323 269 243 (5,5,3,3) 367 308 278 

(4,3,4) 122 98 88 (3,5,3,4) 327 281 254 (4,5,3,4) 383 322 290 (5,5,3,4) 433 364 328 

(4,3,5) 151 117 105 (3,5,3,5) 392 329 300 (4,5,3,5) 447 376 339 (5,5,3,5) 503 421 382 

(5,4,3) 162 135 119 (3,5,4,3) 330 281 253 (4,5,4,3) 382 319 290 (5,5,4,3) 428 363 332 

(5,4,4) 192 162 141 (3,5,4,4) 394 334 302 (4,5,4,4) 446 381 345 (5,5,4,4) 501 430 386 

(5,4,5) 232 190 170 (3,5,4,5) 463 393 360 (4,5,4,5) 522 441 402 (5,5,4,5) 581 494 448 

(5,5,3) 210 176 155 (3,5,5,3) 391 333 298 (4,5,5,3) 440 375 342 (5,5,5,3) 497 424 384 

(5,5,4) 246 207 182 (3,5,5,4) 455 394 359 (4,5,5,4) 515 443 397 (5,5,5,4) 582 494 451 

(5,5,5) 291 245 216 (3,5,5,5) 536 456 421 (4,5,5,5) 595 513 466 (5,5,5,5) 650 568 517 

 
2.3.1. Real Data Application 

 

Wechsler adult intelligence scale data were taken from Mack and Wolfe [18]. The data based on the idea 

that people's comprehension and learning abilities have increased by a certain age and then decreased are 

given in Table 2. 
 

Table 2. Wechsler data 

Age group 

16-19 20-34 35-54 55-69 >70 

8.62 

9.94 

10.06 

9.85 

10.43 

11.31 

9.98 

10.69 

11.40 

9.12 

9.89 

10.57 

4.80 

9.18 

9.27 

 

As it can be seen from the Table 2, it is seen that intelligence scores increased to 35-54 age group, but this 

tendency has decreased after this age range. According to this result, the peak of the umbrella is the third 

level. Accordingly, the following equation can be written for the SU statistic by taking p = 3 

 
2 3 4 5

1 1 3 1

12 13 23 43 53 54( ) ( ).

ij ji

i j i i j i

SU D D

D D D D D D

     

 

     

 
 (28) 
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For the calculation of the observed value of the SU statistic, Table 3 gives the ijR  ranks assigned to the 

ijX  observations. 

 

Table 3.The ranks for Wechsler data 

Age group 

1 2 3 4 5 

X1 R1 X2 R2 X3 R3 X4 R4 X5 R5 

8.62  

9.94 

10.06 

2 

8 

10 

9.85 

10.43 

11.31 

6 

11 

14 

9.98 

10.69 

11.40 

9 

13 

15 

9.12 

9.89 

10.57 

3 

7 

12 

4.80  

9.18 

9.27 

1 

4 

5 

 

Using (25), the values of the D12, D13 and D23 statistics are calculated as follows, respectively 

 

12

13

23

4 9 12 3 6 1 4 39,

7 11 13 1 5 7 0 3 5 52,

3 7 9 0 2 4 0 0 1 26.

D

D

D

       

         

         

 

 

Similarly, using (26), the values of the D43, D53 and D54 statistics are calculated as follows, respectively 

 

43

53

54

6 2 0 10 6 1 12 8 3 48,

8 5 4 12 9 8 14 11 10 81,

2 0 0 6 3 2 11 8 7 39.

D

D

D

         

         

         

 

 

Using these results, the observed value of the SU statistic is calculated as follows 

 

39 52 26 48 81 39 285SU         
 

Monte Carlo critical value for 5k  , 3in  and 0.05  is calculated as ,0.05 244MCSU  . As a result, the 

value of the SU statistic is greater than the critical value, so the null hypothesis against the umbrella 

alternative is rejected. 

 

3. SIMULATION STUDY 

 

In this section, the MW, HN and the proposed tests were compared for type I error rate and power of test. 

The following design factors were used in the simulation study 
 

a. Number of levels (k=4, 5) 

b. The average number of observations per level (n=5,10, 20) 

c. Sample sizes patterns (equal, progressive and one extreme)  

d. Distribution shapes (right-skewed, left-skewed, symmetric) . 

 

The patterns of sample sizes in the levels are given in Table 4. 

 

We used 1 2log- ( , )F v v  distribution to generate data for different distributions. In order to create umbrella 

alternatives, the random variable ij i ijX     was defined where ij  is the iid log-F distribution, and i  is 

the location parameter. The 1 2log- ( , )F v v  distribution is symmetric when 1 2v v , left-skewed when 1 2v v  

and right-skewed when 1 2v v  [14].  For smaller values of 1v  and 2v , the tails of the log-F distribution are 

heavier but  light for larger values of 1v  and 2v . In this simulation study, we used the log-F distributions 

which have 1 2( , ) (4.5,4.5)v v  , (20,1)  and (1,20).  
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Table 4. The patterns of sample sizes 

Sample sizes Progressive Equal One extreme 

k=4 

n1 2 7 14 5 10 20 3 6 12 

n2 4 9 18 5 10 20 3 6 12 

n3 6 11 22 5 10 20 3 6 12 

n4 8 13 26 5 10 20 11 22 44 

Average n 5 10 20 5 10 20 5 10 20 

k=5 

n1 3 6 12 5 10 20 3 6 12 

n2 4 8 16 5 10 20 3 6 12 

n3 5 10 20 5 10 20 3 6 12 

n4 6 12 24 5 10 20 3 6 12 

n5 7 14 28 5 10 20 13 26 52 

Average n 5 10 20 5 10 20 5 10 20 

 

3.1. Comparisons for Type I Error Rate 

 

Under 0H , the experimental type I error rates of the tests for various sample sizes are given in Table 5 

when the nominal type I error rate is 0.05. The robustness of the tests in terms of type I error rate was 

evaluated according to the robustness criteria of Bradley [33]. If the experimental type I error rates for a 

test are within the 0.5   and 0.5   range, this test is considered to be a robust test. As presented in 

Table 5, the experimental type I error rates for all tests are in the range of 0.025 and 0.075. According to 

these results, it is understood that all tests meet the robustness criteria of Bradley [33] for type I error rate. 

 

Table 5. Experimental type I error rates for the tests 

n1 n2 n3 n4 SU MW HN n1 n2 n3 n4 n5 SU MW HN 

2 4 6 8 0.0545 0.0519 0.0468 3 4 5 6 7 0.0533 0.0478 0.0501 

5 5 5 5 0.0457 0.0508 0.0457 5 5 5 5 5 0.0531 0.0498 0.0470 

3 3 3 11 0.0479 0.0499 0.0505 3 3 3 3 13 0.0503 0.0562 0.0522 

7 9 11 13 0.0509 0.0501 0.0510 6 8 10 12 14 0.0490 0.0511 0.0425 

10 10 10 10 0.0498 0.0534 0.0529 10 10 10 10 10 0.0570 0.0515 0.0490 

6 6 6 22 0.0515 0.0499 0.0502 6 6 6 6 26 0.0444 0.0560 0.0473 

14 18 22 26 0.0475 0.0502 0.0528 12 16 20 24 28 0.0476 0.0487 0.0478 

20 20 20 20 0.0481 0.0491 0.0516 20 20 20 20 20 0.0457 0.0516 0.0509 

12 12 12 44 0.0480 0.0497 0.0477 12 12 12 12 52 0.0542 0.0513 0.0504 

 

3.2. Comparisons for Power 

 

Under 1H , the experimental power results of the tests for the log-F (4.5,4.5), log-F (20,1) and log-F (1,20) 

distributions were calculated for k = 4, 5, and given in Tables 6-8. In order to make it easier to interpret the 

results in the tables, the highest power value is highlighted in bold in each simulation (with 10000 

replications) scenario. 

 

As seen in Table 6, when the experimental power values for the symmetric log-F distribution (4.5,4.5) are 

examined, it is seen that the proposed SU test in 71 of the 108 different simulation scenarios 

(12(parameters)×3(average n)×3(sample size patterns)) gave the highest power values or same values. 

According to Table 6, approximately, 66% of the simulation scenarios, the SU test gave the highest power 

values or same values. However, the experimental power values of all tests for the position parameter 

vectors (0, 3, 2, 1) and (0, 3, 2, 1, 0) are generally close to each other. However, it is understood that the 

MW test for these parameter vectors is slightly better in terms of power. 
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Table 6. Experimental power results of the tests for the log-F(4.5,4.5)  distribution 

  Simulation study sample size patterns 

  Progressive Equal One extreme 

  Average n Average n Average n 

(1, 2, 3, 4, 5) Test 5 10 20 5 10 20 5 10 20 

(0,1,0,0) SU .1759 .3939 .6883 .2979 .4954 .7849 .1750 .2984 .5986 

MW .1782 .3714 .6725 .2848 .4828 .7612 .1762 .2991 .5776 

HN .1963 .3346 .6095 .2283 .3920 .6648 .1576 .2951 .5703 

(0,2,0,0) SU .4132 .8417 .9928 .6435 .9284 .9970 .4204 .7265 .9640 

MW .3881 .7878 .9856 .6072 .9007 .9939 .3896 .6624 .9400 

HN .4044 .7360 .9700 .4955 .7944 .9822 .3502 .6274 .9240 

(0,3,0,0) SU .6442 .9709 1.0000 .8657 .9929 1.0000 .6221 .9206 .9991 

MW .5849 .9472 .9998 .8245 .9866 1.0000 .5667 .8634 .9938 

HN .6030 .9261 .9992 .7117 .9562 .9994 .5375 .8271 .9934 

(0,3,1,0 ) SU .8035 .9889 1.0000 .8906 .9949 1.0000 .7841 .9813 .9998 

MW .8039 .9872 1.0000 .8740 .9939 1.0000 .7766 .9772 .9996 

HN .7566 .9657 .9999 .7505 .9740 .9999 .6576 .9282 .9988 

(0,3,2,0) SU .8715 .9934 1.0000 .8784 .9950 1.0000 .8774 .9955 1.0000 

MW .8753 .9927 1.0000 .8837 .9953 1.0000 .8733 .9951 1.0000 

HN .8141 .9758 .9999 .7798 .9761 .9997 .7186 .9643 1.0000 

(0,3,2,1) SU .5981 .9139 .9990 .7111 .9526 .9992 .6190 .8910 .9978 

MW .6347 .9240 .9994 .7331 .9631 .9994 .6318 .9064 .9976 

HN .5191 .7485 .9819 .4704 .7863 .9755 .3319 .6273 .9347 

(0,1,0,0,0) SU .1361 .3019 .5684 .2701 .4652 .7432 .1515 .2591 .5023 

MW .1410 .3059 .5354 .2526 .4449 .7106 .1486 .2703 .4837 

HN .1178 .2465 .5001 .2039 .3250 .5363 .1219 .2308 .4523 

(0,2,0,0,0) SU .3480 .7154 .9607 .6027 .8932 .9952 .3213 .6239 .9164 

MW .3215 .6619 .9271 .5596 .8471 .9896 .3122 .5799 .8797 

HN .2755 .5747 .8904 .3998 .6895 .9344 .2639 .5304 .8358 

(0,3,0,0,0) SU .5231 .9110 .9985 .8220 .9856 1.0000 .4905 .8300 .9915 

MW .4716 .8587 .9918 .7521 .9665 .9998 .4591 .7667 .9735 

HN .4176 .7833 .9846 .5507 .8580 .9937 .3993 .7144 .9551 

(0,3,1,0,0) SU .7432 .9851 .9999 .9153 .9975 1.0000 .7108 .9677 .9998 

MW .7408 .9796 .9998 .8918 .9964 1.0000 .6874 .9499 .9992 

HN .6190 .9483 .9991 .7249 .9543 .9988 .5977 .8990 .9974 

(0,3,2,0,0) SU .8558 .9969 1.0000 .9366 .9992 1.0000 .8316 .9930 1.0000 

MW .8475 .9962 1.0000 .9248 .9990 1.0000 .8045 .9866 1.0000 

HN .7447 .9792 1.0000 .7965 .9781 1.0000 .6921 .9648 .9998 

(0,3,2,1,0) SU .8640 .9965 1.0000 .9119 .9973 1.0000 .8869 .9977 1.0000 

MW .8761 .9973 1.0000 .9218 .9975 1.0000 .8942 .9981 1.0000 

HN .7163 .9714 1.0000 .7208 .9551 .9996 .7297 .9707 1.0000 

 

In Table 7, it is understood that the simulation results for the log-F (20,1) which is right skewed are quite 

similar to the simulation results for the log-F (4.5,4.5) distribution. Similar to the results in Table 6, the 

proposed SU test for the log-F(20,1) distribution gave the highest power values or same values in 72 of 108 

different simulation scenarios. In addition, the MW test is slightly stronger than the other tests when 

location parameter vectors are (0, 3, 2, 1) and (0, 3, 2, 1, 0). 

 

The experimental power values of the tests given in Table 8 for the Log-F (1,20) distribution are very 

similar to the previous power results. If the simulation results for the log-F (1,20) distribution which is left 

skewed are examined, it is observed that the proposed SU test gives the highest power values or same values 

in 72 of 108 different simulation scenarios. In addition, it is observed that the MW test is more powerful 

than the others when the location parameter vectors are (0, 3, 2, 1) and (0, 3, 2, 1, 0). 
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Table 7. Experimental power results of the tests for the log-F(20,1)  distribution 

  Simulation study sample size patterns 

  Progressive Equal One extreme  

  Average n Average n Average n 

(1, 2, 3, 4, 5) Test 5 10 20 5 10 20 5 10 20 

(0,1,0,0) SU .1690 .4046 .6794 .2983 .4959 .7673 .1663 .3220 .5819 

MW .1816 .3743 .6735 .2823 .4919 .7502 .1747 .3028 .5660 

HN .1872 .3466 .6145 .2330 .3836 .6632 .1472 .2765 .5657 

(0,2,0,0) SU .4091 .8447 .9919 .6519 .9284 .9973 .4105 .7182 .9658 

MW .3904 .7958 .9856 .6149 .9001 .9942 .3850 .6611 .9449 

HN .4352 .7506 .9686 .5094 .8076 .9780 .3462 .6359 .9363 

(0,3,0,0) SU .6304 .9733 1.0000 .8697 .9930 1.0000 .6187 .9208 .9987 

MW .5669 .9483 .9994 .8224 .9865 1.0000 .5627 .8588 .9947 

HN .6022 .9269 .9980 .7040 .9528 .9998 .5371 .8421 .9926 

(0,3,1,0 ) SU .8007 .9905 1.0000 .8928 .9951 1.0000 .7827 .9828 1.0000 

MW .8026 .9883 .9999 .8783 .9950 1.0000 .7838 .9758 .9998 

HN .7483 .9662 .9999 .7636 .9718 .9999 .6717 .9330 .9993 

(0,3,2,0) SU .8763 .9933 1.0000 .8683 .9943 .9999 .8712 .9954 1.0000 

MW .8710 .9923 1.0000 .8763 .9945 .9999 .8753 .9942 1.0000 

HN .8095 .9754 1.0000 .7855 .9719 .9999 .7404 .9646 1.0000 

(0,3,2,1) SU .5869 .9160 .9984 .6948 .9501 .9990 .5918 .8924 .9980 

MW .6198 .9289 .9990 .7235 .9630 .9993 .6247 .9075 .9978 

HN .5020 .7791 .9786 .4757 .7900 .9716 .3364 .6110 .9324 

(0,1,0,0,0) SU .1384 .3206 .5628 .2639 .4513 .7371 .1396 .2806 .5196 

MW .1430 .3093 .5260 .2547 .4427 .7119 .1465 .2723 .4847 

HN .1206 .2628 .4760 .1827 .3262 .5368 .1359 .2310 .4445 

(0,2,0,0,0) SU .3456 .7031 .9597 .5914 .8927 .9949 .3106 .6128 .9144 

MW .3209 .6570 .9290 .5553 .8520 .9890 .3050 .5773 .8717 

HN .2683 .5788 .9013 .3981 .6756 .9349 .2713 .5221 .8259 

(0,3,0,0,0) SU .5601 .9126 .9983 .8236 .9872 .9999 .4919 .8438 .9911 

MW .4758 .8567 .9923 .7588 .9685 .9997 .4438 .7582 .9715 

HN .4016 .7855 .9834 .5614 .8747 .9920 .3870 .6948 .9560 

(0,3,1,0,0) SU .7592 .9879 1.0000 .9037 .9971 1.0000 .6869 .9648 .9996 

MW .7487 .9809 1.0000 .8850 .9950 1.0000 .6725 .9461 .9987 

HN .6344 .9444 .9997 .7339 .9589 .9994 .5579 .9059 .9955 

(0,3,2,0,0) SU .8661 .9979 1.0000 .9339 .9990 1.0000 .8328 .9916 1.0000 

MW .8518 .9960 1.0000 .9266 .9987 1.0000 .8086 .9850 1.0000 

HN .7483 .9809 .9999 .7834 .9824 1.0000 .7085 .9608 .9998 

(0,3,2,1,0) SU .8616 .9969 1.0000 .8997 .9975 1.0000 .8899 .9978 1.0000 

MW .8703 .9971 1.0000 .9176 .9987 1.0000 .8933 .9979 1.0000 

HN .7230 .9703 1.0000 .7123 .9571 .9989 .7336 .9727 1.0000 

 

Table 8. Experimental power results of the tests for the log-F(1,20) distribution 

  Simulation study sample size patterns 

  Progressive Equal One extreme  

  Average n Average n Average n 

(1, 2, 3, 4, 5) Test 5 10 20 5 10 20 5 10 20 

(0,1,0,0) SU .1674 .4012 .6817 .2923 .4907 .7838 .1820 .3152 .5940 

MW .1741 .3713 .6749 .2799 .4818 .7589 .1881 .3047 .5771 

HN .1936 .3388 .6079 .2401 .3819 .6509 .1643 .2845 .5549 

(0,2,0,0) SU .4063 .8440 .9924 .6517 .9209 .9979 .4095 .7304 .9616 

MW .3957 .7943 .9851 .6087 .8997 .9954 .3876 .6663 .9382 

HN .4194 .7533 .9681 .5007 .8038 .9799 .3408 .6242 .9288 
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(0,3,0,0) SU .6166 .9713 .9999 .8710 .9921 1.0000 .6269 .9216 .9992 

MW .5818 .9443 .9996 .8149 .9844 1.0000 .5725 .8614 .9941 

HN .6002 .9266 .9993 .7016 .9581 .9997 .5395 .8291 .9932 

(0,3,1,0 ) SU .8081 .9890 1.0000 .8909 .9948 1.0000 .7849 .9802 1.0000 

MW .8053 .9870 1.0000 .8810 .9945 1.0000 .7860 .9779 .9999 

HN .7478 .9731 .9998 .7660 .9702 .9998 .6674 .9355 .9996 

(0,3,2,0) SU .8753 .9949 1.0000 .8812 .9959 1.0000 .8767 .9959 1.0000 

MW .8729 .9945 1.0000 .8774 .9956 1.0000 .8792 .9941 1.0000 

HN .8239 .9781 1.0000 .7699 .9761 .9999 .7485 .9660 .9997 

(0,3,2,1) SU .6025 .9209 .9985 .7211 .9515 .9996 .6073 .8936 .9979 

MW .6234 .9288 .9991 .7448 .9633 .9999 .6249 .9071 .9984 

HN .4787 .7678 .9786 .4687 .7873 .9765 .3306 .6156 .9256 

(0,1,0,0,0) SU .1425 .3144 .5395 .2782 .4469 .7419 .1462 .2714 .4976 

MW .1472 .3101 .5270 .2529 .4378 .6974 .1538 .2736 .4865 

HN .1291 .2535 .4919 .1828 .3220 .5375 .1231 .2433 .4452 

(0,2,0,0,0) SU .3477 .7033 .9605 .6066 .8944 .9943 .3274 .6228 .9166 

MW .3305 .6585 .9280 .5533 .8527 .9878 .3251 .5864 .8779 

HN .2807 .5841 .8883 .3857 .6824 .9333 .2633 .5268 .8310 

(0,3,0,0,0) SU .5364 .9129 .9985 .8276 .9869 .9999 .4917 .8384 .9899 

MW .4755 .8578 .9912 .7594 .9708 .9996 .4473 .7664 .9715 

HN .4040 .7995 .9840 .5571 .8738 .9941 .3852 .7078 .9647 

(0,3,1,0,0) SU .7590 .9853 1.0000 .9038 .9969 1.0000 .6997 .9626 .9995 

MW .7393 .9804 1.0000 .8892 .9955 1.0000 .6746 .9446 .9992 

HN .6015 .9464 .9991 .7310 .9577 .9995 .5724 .9087 .9977 

(0,3,2,0,0) SU .8584 .9975 1.0000 .9342 .9987 1.0000 .8237 .9938 1.0000 

MW .8465 .9953 1.0000 .9305 .9989 1.0000 .8039 .9880 1.0000 

HN .7539 .9798 1.0000 .8057 .9822 1.0000 .6730 .9622 .9996 

(0,3,2,1,0) SU .8617 .9968 1.0000 .9061 .9975 1.0000 .8905 .9973 1.0000 

MW .8813 .9978 1.0000 .6210 .9978 1.0000 .8934 .9972 1.0000 

HN .7087 .9711 1.0000 .7158 .9583 .9997 .7295 .9731 .9997 

 

In Tables 6-8, The proposed SU test gave the highest power values for the parameter vectors such as 

(0,2,0,0), (0,3,0,0), (0,2,0,0,0) and (0,3,0,0,0). 

 

4. CONCLUSION 

 

In this study, a nonparametric test called the SU test was proposed for umbrella alternative hypothesis. The 

S test proposed by Shan, et al. [16] for ordered alternatives was adapted for umbrella alternatives. Since the 

distribution of the proposed test statistic was difficult to determine analytically, the Monte Carlo study was 

used to obtain critical values. 

 

In the previous section, the SU test, HN test and MW test by a comprehensive simulation study were 

compared in terms of type I error rate and power. According to previous study results, the MW test is the 

most common test in the literature for umbrella alternatives. In this study, it was found that the SU test, 

MW test and HN test ensured Bradley's robustness criteria based on type I error rate, and the proposed SU 

test is generally stronger than the other tests. In approximately 66% of the simulation scenarios, the SU test 

gave the highest power values or same values. Also, the new statistics is more powerful when the one 

location parameter is 2 or 3 and others are 0.On the other hand, it is observed that the MW test for the 

umbrella alternatives where location parameters decrease monotonically after the peak level as (0, 3, 2, 1) 

and (0, 3, 2, 1, 0) gives better results. However, the power results of the proposed test are very close to 

those of the MW test in these situations. 

 

As a result, the SU test can be used to test the equality of location parameters against umbrella alternatives 

for symmetric, left-skewed, right-skewed distributions with unknown peaks. 
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Finally, a few suggestions for the development of this study can be given as follows: In addition to the tests 

in this study, the scope of the study can be extended by taking other tests in the literature. The theoretical 

distribution or exact distribution of the SU statistic can be found and the simulation study can be based on 

these results. Thus, Monte Carlo calculation time can be saved. 
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APPENDIX 

 
MCSS <- function(n,tp,nit=10000,alpha=0.05) { 

# n: sample size vector 

# tp: peak point 

x<-y<-list() 

k<-NROW(n) 

mu<-c(rep.int(0,k)) 

SS<-c() 

for (i in 1:k) x[[i]] <- rep.int(i,n[i]) 

for (it in 1:nit) 

{ 

  for (i in 1:k) y[[i]] <- mu[i]+log(rf(n[i],4.5,4.5)) 

  simdata<-as.data.frame(cbind(unlist(x),unlist(y))) 

  names(simdata)[1]<-"XX" 

  names(simdata)[2]<-"YY" 

  simdata$XX<-as.factor(simdata$XX) 

  SS[it]<-SsUmb(YY~XX,simdata,tp)$Statistic 

} 

result <- list() 

result$criVal <- quantile(SS,1-alpha) 

} 

Figure 1. MCSS function for calculating theMonte Carlo critical values  
 

SsUmb <- function(formula, data, tp) { 

# formula: a formula of the form lhs ~ rhs where lhs gives the sample values and rhs 

the corresponding groups 

# data: a data frame containing the variables in the formula formula 

# tp: peak point 

dp=as.character(formula) 

DNAME <- paste(dp[[2L]], "and", dp[[3L]]) 

y = data[, dp[[2L]]] 

r = rank(data[, dp[[2L]]]) 

group = data[, dp[[3L]]] 

n <- length(y) 

x.levels <- levels(factor(group)) 

p<-NROW(x.levels) 

sy.n<-y.n <-r.n<-NULL 

S<-0 

for (i in x.levels) { 

  y.n[i] <- length(y[group==i]) 

} 

sy.n=cumsum(y.n) 

r.n=matrix(c(r,group,y),ncol=3,nrow=n) 

for (i in 1:(tp-1)) { 

  for (j in (i+1):tp) { 

    for (k in (sy.n[i]-y.n[i]+1):sy.n[i]){ 

      for (m in (sy.n[j-1]+1):sy.n[j]){ 

        S=S+(r.n[k,3]<r.n[m,3])*(r.n[m,1]-r.n[k,1])}}}} 

for (i in tp:(p-1)) { 

  for (j in (i+1):p) { 

    for (k in (sy.n[i]-y.n[i]+1):sy.n[i]){ 

      for (m in (sy.n[j-1]+1):sy.n[j]){ 

        S=S+(r.n[k,3]>r.n[m,3])*(r.n[k,1]-r.n[m,1])}}}} 

result <- list() 

result$Statistic <- S 

} 

Figure 2. SsUmb function for calculating theproposed test statistics 


