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Highlights

« A nonparametric test to umbrella alternatives is proposed.
* Proposed test perform better in terms of power.
* Proposed test appear to be closer to nominal level for small sample sizes.

Article Info Abstract

In this study, a distribution free new statistic is introduced to test the equality of locations
Received: 17/05/2019 against the umbrella alternative hypotheses. The Shan test known for the ordered
Accepted: 09/04/2020 alternatives hypotheses is arranged for the umbrella alternative hypotheses. This statistic

can be considered as an extension of the sign and Mann-Whitney statistics. Using a
comprehensive simulation design, the proposed test was compared with the

Keywords Hettmansperger and Norton and, Mack-Wolfe tests according to the criteria of the power
Nonparametric statistics and type | error rate of the test. In the simulation outcomes, it was seen that the robustness
Umbrella alternative condition for Bradley's type | error rate were ensured for all tests. The power comparison
Monte Carlo Simulation outcomes also showed that the proposed test is more powerful than the other tests.

1. INTRODUCTION

In literature, while the equality of location parameters is tested, the alternative hypothesis may have a
certain pattern structure. Studies that have alternative hypotheses with a specific pattern structure are widely
used in many areas such as health, economics, agriculture, behavioral sciences. There may be many research
problems where such an alternative hypothesis is appropriate. For example, studies such as in the field of
health, drug screening studies, dose-response trials, dose-finding trials, life-testing experiments, age-related
responses are related to alternative hypotheses with a specific pattern structure. Similarly, when the toxin
substance is applied, there is an increase in the number of organisms but when the dose of the toxin
substance exceeds a certain amount, it is observed that they decrease or disappear. Such a dose-response
study requires the alternative hypothesis to have a certain pattern as increasing to a certain point and then
decreasing.

In the literature, there are two types of pattern structures such as ordered and umbrella alternatives for
alternative hypotheses. Ordered alternative hypotheses are linear, concave, or convex structures where the
location parameters with the lowest and high value are at the first and last level, or at the last and first level.
For example, when the vector of location parameters is indicated by the vectors such as (0,1,2,3), (5,4,3,2),
(5,5,5,0), (0,0,0,5) and (0,1,1,5) state an ordered alternative hypothesis. While the first two of these vectors
represent a linear ordered alternative, the third represents a concave ordered alternative. Furthermore, the
last two vectors indicate a convex ordered alternative hypothesis. The JT test was first proposed by Terpstra
[1] and Jonckheere [2] to test the null hypothesis of equality of location parameters against an ordered
alternative hypothesis. Later, Chacko [3], Puri [4], May and Konkin [5], Odeh [6], Cuzick [7],
Hettmansperger and Norton [8], Beier and Buning [9], Neuhiuser, et al. [10], Buning and Kossler [11],
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Terpstra and Magel [12], Chang and Yen [13], Terpstra, et al. [14], Chang, et al. [15], Shan, et al. [16] and
Gaur [17] developed alternative tests for ordered alternative hypothesis.

On the other hand, the location parameter with the highest / low value for umbrella alternatives is at any
level outside the first or last level. This level is called as a peak. For example, while the vector of location
parameters are indicated by , the vectors such as (0,1,3,2), (0,0,3,0), (1,3,5,0), (3,4,5,4) and (0,0,2,1) state
an umbrella alternative hypothesis where the peak is the level 3. In these alternative hypotheses, the
location parameters before and after the peak may have a linear, concave or convex structure among
themselves. As can be easily understood, ordered alternatives are a special form of umbrella alternatives.
When the peak is first or last level, umbrella alternatives turn into ordered alternatives. Therefore, the some
of the tests developed for umbrella alternatives are an extension of the proposed tests for ordered
alternatives. For instance, the test proposed by Mack and Wolfe [18] for umbrella alternatives is an
adaptation of the JT test proposed by Jonckheere [2] for ordered alternatives. Some of the tests proposed
for ordered alternatives, but later adapted for umbrella alternatives were studied by Buning and Kossler
[11], Kossler [19], Gaur, et al. [20]. Besides these, Shi [21], Cohen and Sackrowitz [22], Pan [23], Hartlaub
and Wolfe [24], Hayter and Liu [25], Lee and Chen [26], Magel and Qin [27], Singh and Liu [28], Alvo
[29], Bhat and Patil [30], Basso and Salmaso [31] studied on testing for umbrella alternatives.

In this study, a test statistic that is adapted is proposed to test the null hypothesis against umbrella alternative
hypothesis. This test statistic is an extension of the S test proposed by Shan, et al. [16], for ordered
alternatives. Considering the studies regarding the comparison of the proposed tests for ordered alternatives
in terms of power, it is observed that the S test gives better results in general [16, 32]. Based on this idea,
the S test is adapted to the umbrella alternatives.

The rest of this article is structured as follows. In section 2, some tests and the proposed test are introduced
for umbrella alternatives. Section 3 includes the application of the proposed test on a real data. There is a
comprehensive simulation study on the comparison of the proposed test and other tests based on type I error
rate and power of test in the section 4. The final section is the conclusion.

2. NONPARAMETRIC TESTS FOR UMBRELLA ALTERNATIVES

Umbrella alternatives are widely used in research in many areas such as health, agriculture and economics.
For example, in a health survey, it may be desirable to determine the optimal dose of a drug for a particular
patient. The drug improves healing in patients up to a certain dose, but it can cause the worsening of
thesepatients after the overdose. In such studies, the dose level at which healing is at its highest level is
called as the peak. Similarly, an agriculturist can use umbrella alternatives to determine the most
appropriate level of fertilizer.

Let Xll, xiz,..., X
continuous distribution function F,(x)=F((x—6,)/ o;), where —0o <8 <+o00 and o, >0 are the location
and dispersion parameters, respectively. The total number of subjects in the study is n, with n, subjects in

i=1...,k be random independent samples with size n; from k populations with the

in; 1

the i.th sample, and N = Z n; . The null hypothesis of the equality of location parameters and the umbrella
alternative hypothesis are shown below

Hy:6,=6,=..=6, 1)
and with at least one strict inequality

H:6,<6,<..0,,<6,20,,>..>6,. @)
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The H, hypothesis given in (2) is called as the umbrella alternative where the peak level isp, 1< p<Kk. In

this section, the two known tests to test the equality of locations against the umbrella alternative are
introduced and a new test is proposed.

2.1. Mack and Wolfe Test

Mack and Wolfe [18] proposed a test that is an extension of the JT test proposed by Terpstra [1]and
Jonckheere [2] for the testing of the equality of locations against the ordered alternative. When the
alternative hypothesis has a certain pattern, the first test was proposed by Terpstra [1] and Jonckheere [2].
They developed a nonparametric test named the JT test for ordered alternatives. An ordered alternative that
is frequently used in research in many areas such as umbrella alternative is shown below, with at least one
strict inequality

H,:6<6,<..<6,. 3)

As can be easily seen, if the last level in umbrella alternative given in (2) is taken as the peak, i.e p=k,
the umbrella alternative turns into an ordered alternative.

The statistic JT consist of the sum of the k(k —1) /2 Mann-Whitney statistics, i.e.,

JT = _zk:uij (4)

Uijzzzl(xil<xjm)a )

1=1 m=1

n; and n; are the sample size for ith and jth populations, respectively and | (y) =1 if y is true, and 0
otherwise.

It is known that the JT statistic have normal distribution under H,. Mean and variance for this statistic are
given as follows.

E(IT)=—— 2 — (6)

NZ(2N +3)—Zk:ni2(2ni+3)

V(IT)= 7;1 (7

where N=n +n, +...+n,.

The Mack and Wolfe statistic is the sum of the Mann-Whitney statistics, which are defined separately for
the levels to the left and right of the peak. This statistic is called as the MW statistic, and is expressed as
follows
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p-1 p k-1 Kk
Y539 VXS 39311 ®

i=L j=itl i=p j=i+l

where Uj; is the Mann-Whitney statistic for ith and jth samples, respectively; and

nnj
Uj :ZZI(Xia<ij) )
a=1 b=1
and
1, X <Xy
1
I (Xia < Xjp) = > Kia = Xjp - (10)
0, Xia > Xy

Under H,, the mean and variance for this statistic are given as follows

[
N7 +NZ->"n?—n

E(MW)= 4i:1 (11)

and

v(MW)=7—12[2(N13+ N3)+3(NZ+NZ)- _kl n?(2n, +3)

(12)
—n?(2n, +3)+12n,N;N, ~12nN |

where N, =Zp:ni , N, =Zk:ni and N =Zk:ni . The MW statistic converges to normal distribution with
i=1 i= i=1

mean E(MW) and variancepV(MW) [18].

2.2. Hettmansperger and Norton Test

Hettmansperger and Norton [8] studied a general approach to develop a test for patterned alternatives. In

this proposed approach for the testing of the null hypothesis against an ordered alternative, they considered

situations where the peak is known and unknown. The null hypothesis for this test is as in (1), but the
alternative hypothesis is different from that given in (2), and is given as follows

H,:6,=6,+6, (13)
where >0, j=12,...,kK, and

€ <€y <..<Cpy <Cy>Cpy >...>C (14)
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are the constants indicating the umbrella pattern with 6, peak. When the location parameters are different,
Hettmansperger and Norton [8] suggested that the differences of any two consecutive c; constants be taken

the equal if there is no information about ¢; constants.

Let Rij, i=12,..k and j=12,..,n;, denote the rank of X in the combined data;F_Qi be the mean of the

ranks of the ith sample; and N be the size of the combined sample. To test the equality of locations against
the umbrella alternative hypothesis, the HN statistic is given as follows [8]

HN:( 12 j
N+1

P
o ZM—E )R + Zz,(zp—u—
i=1

i=p+1

D K 1/2
{Zﬂﬁ(i—éw)% 2. 4(@2p-i-t,)*

i=p+1

(15)

p k
where 4 =n /N and G, =Y i+ Y (2p-i)4.

i=1 i=p+1

Under H,, the HN statistic converges to normal distribution with zero mean and variance as follows.

v (HN [N +1:|Z/1| (16)

2.3. Proposed Test

Shan, et al. [16] proposed the S test based on the ranks to test the equality of locations against ordered
alternatives. This statistic is defined as follows

S= Z > Dy (17)

where R; (R;,) are the ranks corresponding to the X; (X;,) observations in the combined data,

Dj ZZZ.,.m (18)

1=1 m=1

and
Zijm = (R —Ry)I (ij > X)) (19)

Under H,,the mean and variance of the statistic S are, respectively,

+1k1 Kk
E(S)_ 5 D> nn, (20)

i=1 j=i+l
and
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k i-1
2 k-1 Kk k-1 n. Kk n.
V(S):[N N_(N +1) ) donn +2/ > n, ,;1 e, ; '1CovA
12 i=1l j=i+l i=1 i=2
2 2 (21)
k=2 k-1 Kk
+2| > > > nn;n; |CovB.
i=1 j=i+ll=j+1
CovA and CovB in the above are calculated by the following formulas
2 —
Cova_ ZN"+N-1 (22)
90
and
_ 2 J— p—
cog= /N “1IN-4 23)
360

In this paper, we propose a new test statistic which is the sum of the S statistics defined separately for the
levels to the right and left of the peak level. This new test statistic which is proposed for umbrella
alternatives and called the SU is defined as follows

p-1 p k-1 k
SU=> > D;+>.> Dy. (24)

i=1 j=itl i=p j=i+l

The SU statistics for levels to the left and right of the peak level are based on the following definitions,
respectively.

D Zzzulm ! |Jlm (ij R| )I (X > XI|) (25)
and
Dj; _Zzzllml v Zjim = Ry =Ry (X > X ) (26)

Under H,, the mean of the SU statistic is easily obtained as follows.

N, +185 & N, +1&8 &
E(SU) = 16 D i+ 26 > > o (27)
i=1 j=i+l i=p j=i+1

p k
where N;=>"n; and N, =Y n,.

i=1 i=p
However, it is quite complicated to find the variance formula for this statistic. Because the variance formula
p-1 p k-1 k
of the SU statistic includes the variances of the Z Z D; and Z Z D; statistics and the covariance

i=1 j=i+l i=p j=i+l
between these statistics. Therefore, the critical values for the SU test were obtained by the Monte Carlo
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simulation study with the 10000 replications. These critical values for k = 3, 4 and n,=3,4,5are given in

Table 1. In addition, for the ease of calculating the test statistics, the necessary R codes are presented in the
appendix.

Table 1. Critical values based on Monte Carlo simulation for the SU test

a (%) a (%) a (%) a (%)

ni 1 5 10 | ni 1 5 10 | ni 1 5 10 | ni 1 5 10
(333) |81 |60 |53 [(3333)] 168|141 125] (4,33,3) | 195 | 163 | 148 | (5,3,3,3) | 229 | 193 | 169
(334) ]9 |80 |70 | (3,334) 207|174 ] 156 | (4,3,34) | 239 | 200 | 179 | (5,3,3,4) | 272 | 229 | 206
(335) | 122 |96 |87 | (3,3,35) | 249 | 209 | 190 | (4,3,3,5) | 282 | 239 | 214 | (5,3,3,5) | 320 | 270 | 243
(343)] 10388 |75 | (3343) | 204|175 156 | (4,3,4,3) | 236 | 200 | 179 | (5,3,4,3) | 273 | 228 | 204
(344) 1135|110 | 96 | (3,3,4,4) | 248 | 212 | 192 | (4,3,4,4) | 285 | 243 | 216 | (5,3,4,4) | 327 | 272 | 245
(345) | 171 | 135 | 117 | (3,3,4,5) | 301 | 254 | 232 | (4,3,4,5) | 339 | 288 | 260 | (5,3,45) | 375 | 322 | 292
(353) | 138 | 114 | 101 | (3,3,5,3) | 246 | 209 | 189 | (4,35,3) | 277 | 236 | 216 | (5,3,5,3) | 319 | 268 | 240
(354) | 172 | 144 | 125 | (3,35,4) | 295 | 255 | 232 | (4,35,4) | 334 | 287 | 259 | (5,3,5,4) | 375 | 319 | 288
(3,55) | 207 | 172 | 153 | (3,3,5,5) | 361 | 307 | 278 | (4,3,5,5) | 400 | 337 | 308 | (5,3,5,5) | 443 | 374 | 341
(433) ]9 |81 |67 |(3433) 223|184 166 | (4,4,33) | 256 | 216 | 195 | (5,4,3,3) | 297 | 247 | 221
(434) | 122196 |87 | (34,34) | 266 | 225 | 203 | (4,4,3,4) | 301 | 257 | 234 | (5,4,3.4) | 348 | 297 | 266
(4,35) | 141 | 122 | 105 | (3,4,3,5) | 313 | 269 | 242 | (4,4,3,5) | 360 | 305 | 276 | (5,4,3,5) | 405 | 342 | 309
(443) 135 [ 110 | 96 | (3,4,4,3) | 264 | 226 | 202 | (4,4,4,3) | 309 | 255 | 231 | (5,4,4,3) | 351 | 293 | 265
(4,44) | 162 | 135 | 118 | (34,4,4) | 321 | 270 | 245 | (4,4,4,4) | 365 | 309 | 277 | (5,4,4,4) | 409 | 345 | 312
(4,45) | 200 | 162 | 143 | (34,45) | 373 | 321 | 293 | (4,4,45) | 421 | 361 | 329 | (5,4,45) | 477 | 400 | 365
(453) | 172 | 144 | 128 | (3,4,5,3) | 315 | 266 | 242 | (4,4,5,3) | 365 | 304 | 274 | (5,4,5,3) | 403 | 343 | 309
(454) | 207 | 173 | 153 | (3,4,5,4) | 373 | 325 | 291 | (4,45,4) | 421 | 359 | 330 | (5,4,5,4) | 468 | 404 | 364
(455) | 248 | 206 | 185 | (3,4,5,5) | 444 | 381 | 347 | (4,45,5) | 492 | 425 | 381 | (5,4,5,5) | 548 | 470 | 425
(433)]9 |80 |70 [ (3533) | 274|233 ] 211| (45,33) | 323 | 269 | 243 | (5,5,3,3) | 367 | 308 | 278
(434) ] 12298 |8 | (3534) | 327|281 ]254 | (45,34) | 383 | 322 | 290 | (5,5,3.4) | 433 | 364 | 328
(4,35) | 151 | 117 | 105 | (3,5,3,5) | 392 | 329 | 300 | (4,5,3,5) | 447 | 376 | 339 | (5,5,3,5) | 503 | 421 | 382
(54,3) | 162 | 135 | 119 | (3,5,4,3) | 330 | 281 | 253 | (4,5,4,3) | 382 | 319 | 290 | (5,5,4,3) | 428 | 363 | 332
(54,4) | 192 | 162 | 141 | (35,4,4) | 394 | 334 | 302 | (4,5,4,4) | 446 | 381 | 345 | (5,5,4,4) | 501 | 430 | 386
(5,4,5) | 232 | 190 | 170 | (3,5,455) | 463 | 393 | 360 | (4,5,4,5) | 522 | 441 | 402 | (5,5,4,5) | 581 | 494 | 448
(5,5,3) | 210 | 176 | 155 | (3,5,5,3) | 391 | 333 | 298 | (4,5,5,3) | 440 | 375 | 342 | (5,5,5,3) | 497 | 424 | 384
(5,5,4) | 246 | 207 | 182 | (3,5,5,4) | 455 | 394 | 359 | (4,5,5,4) | 515 | 443 | 397 | (5,5,5,4) | 582 | 494 | 451
(5,55) | 291 | 245 | 216 | (3,5,5,5) | 536 | 456 | 421 | (4,5,5,5) | 595 | 513 | 466 | (5,5,5,5) | 650 | 568 | 517

2.3.1. Real Data Application

Wechsler adult intelligence scale data were taken from Mack and Wolfe [18]. The data based on the idea
that people's comprehension and learning abilities have increased by a certain age and then decreased are
given in Table 2.

Table 2. Wechsler data

Age group

16-19 | 20-34 | 35-54 | 55-69 | >70
8.62 |9.85 (998 |[9.12 |4.80
9.94 | 10.43 | 10.69 | 9.89 | 9.18
10.06 | 11.31 | 11.40 | 10.57 | 9.27

As it can be seen from the Table 2, it is seen that intelligence scores increased to 35-54 age group, but this
tendency has decreased after this age range. According to this result, the peak of the umbrella is the third
level. Accordingly, the following equation can be written for the SU statistic by taking p = 3

SU=> > D;+> > Dy (28)

il j=itl i=3 j=i+l

=(Dy, + Di3 + Dy3) +(Dyg + Dsg + Dsy).
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For the calculation of the observed value of the SU statistic, Table 3 gives the R; ranks assigned to the

X;; observations.

Table 3.The ranks for Wechsler data

Age group

1 2 3 4 5
X1 Ri | X, R, | X3 Rs | X4 R. | Xs
862 |2 985 |6 [998 |9 |912 |3 |4.80
994 |8 |1043|11|1069(13|9.89 |7 |9.18
10.06 | 10 | 11.31 | 14 | 11.40 | 15 | 10.57 | 12 | 9.27

NNy

Using (25), the values of the D12, D13 and D23 statistics are calculated as follows, respectively

D,=4+9+12+3+6+1+4=39,
D;=7+11+13+1+5+7+0+3+5=52,
Dy;=3+7+9+0+2+4+0+0+1=26.

Similarly, using (26), the values of the D43, Ds3 and Ds statistics are calculated as follows, respectively

D,;=6+2+0+10+6+1+12+8+3=48,
Dy; =8+5+4+12+9+8+14+11+10=81,
Dy, =2+0+0+6+3+2+11+8+7=230.

Using these results, the observed value of the SU statistic is calculated as follows
SU =39+52+26+48+81+39=285.

Monte Carlo critical value fork =5, n, =3and «=0.05is calculated as SU . 45 =244 . As a result, the

value of the SU statistic is greater than the critical value, so the null hypothesis against the umbrella
alternative is rejected.

3. SIMULATION STUDY

In this section, the MW, HN and the proposed tests were compared for type | error rate and power of test.
The following design factors were used in the simulation study

a. Number of levels (k=4, 5)

b. The average number of observations per level (n=5,10, 20)
c. Sample sizes patterns (equal, progressive and one extreme)
d. Distribution shapes (right-skewed, left-skewed, symmetric) .

The patterns of sample sizes in the levels are given in Table 4.

We used log-F(vy,V,) distribution to generate data for different distributions. In order to create umbrella
alternatives, the random variable X;; =6 +¢&; was defined where &; is the iid log-F distribution, and &, is
the location parameter. The log-F(v;,Vv,) distribution is symmetric when v, =v,, left-skewed when v, <v,
and right-skewed when v, >v, [14]. For smaller values of v, and v, , the tails of the log-F distribution are
heavier but light for larger values of v; and v,. In this simulation study, we used the log-F distributions

which have (v;,v,)=(4.5,4.5), (20,1) and (1,20).
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Table 4. The patterns of sample sizes

Sample sizes | Progressive | Equal | One extreme
k=4

n: 2 |7 14 |5 |10 |20 |3 6 12
n, 4 19 18 (5 |10 |20 |3 6 12
N3 6 |11 |22 |5 |10 |20 |3 6 12
N4 8 [13 |26 |5 |10 |20 |11 |22 |44
Average n 5110 |20 |5 |10 |20 |5 10 | 20
k=5

ny 3|6 12 (5 |10 |20 |3 6 12
n, 4 |8 16 |5 |10 |20 |3 6 12
N3 5110 |20 |5 |10 |20 |3 6 12
N4 6 |12 |24 |5 |10 |20 |3 6 12
Ns 7 |14 |28 |5 |10 |20 |13 |26 |52
Average n 5110 |20 |5 |10 |20 |5 10 | 20

3.1. Comparisons for Type | Error Rate

Under H,, the experimental type | error rates of the tests for various sample sizes are given in Table 5
when the nominal type | error rate is 0.05. The robustness of the tests in terms of type | error rate was
evaluated according to the robustness criteria of Bradley [33]. If the experimental type | error rates for a
test are within the ¢ —0.5« and « +0.5« range, this test is considered to be a robust test. As presented in
Table 5, the experimental type | error rates for all tests are in the range of 0.025 and 0.075. According to
these results, it is understood that all tests meet the robustness criteria of Bradley [33] for type | error rate.

Table 5. Experimental type | error rates for the tests

Nt | N2 |ns|ns|SU MW HN Nt |n2|nNns|nsfns| SU MW HN

2 |4 |6 |8 |0.0545|0.0519 |0.0468 |3 |4 |5 |6 |7 |0.0533|0.0478 | 0.0501
5 |5 |5 |5 |0.0457 | 0.0508 | 0.0457 |5 |5 |5 |5 |5 |0.0531 | 0.0498 | 0.0470
3 |3 |3 [11/0.0479]0.0499 | 0.0505|3 |3 |3 |3 |13]0.0503 | 0.0562 | 0.0522
7 |9 |11)|13|0.0509 | 0.0501|0.0510 |6 |8 |10 |12 |14 |0.0490 | 0.0511 | 0.0425
10 | 10 | 10 | 10 | 0.0498 | 0.0534 | 0.0529 | 10 | 10 | 10 | 10 | 10 | 0.0570 | 0.0515 | 0.0490
6 |6 |6 |22]0.0515|0.0499 | 0.0502|6 |6 |6 |6 |26|0.0444 | 0.0560 | 0.0473
14118 |22 | 26 | 0.0475 | 0.0502 | 0.0528 | 12 | 16 | 20 | 24 | 28 | 0.0476 | 0.0487 | 0.0478
20 |20 | 20 | 20 | 0.0481 | 0.0491 | 0.0516 | 20 | 20 | 20 | 20 | 20 | 0.0457 | 0.0516 | 0.0509
12 | 12 | 12 | 44 | 0.0480 | 0.0497 | 0.0477 | 12 | 12 | 12 | 12 | 52 | 0.0542 | 0.0513 | 0.0504

3.2. Comparisons for Power

Under H,, the experimental power results of the tests for the log-F (4.5,4.5), log-F (20,1) and log-F (1,20)

distributions were calculated for k = 4, 5, and given in Tables 6-8. In order to make it easier to interpret the
results in the tables, the highest power value is highlighted in bold in each simulation (with 10000
replications) scenario.

As seen in Table 6, when the experimental power values for the symmetric log-F distribution (4.5,4.5) are
examined, it is seen that the proposed SU test in 71 of the 108 different simulation scenarios
(12(parameters)x3(average n)x3(sample size patterns)) gave the highest power values or same values.
According to Table 6, approximately, 66% of the simulation scenarios, the SU test gave the highest power
values or same values. However, the experimental power values of all tests for the position parameter
vectors (0, 3, 2, 1) and (0, 3, 2, 1, 0) are generally close to each other. However, it is understood that the
MW test for these parameter vectors is slightly better in terms of power.
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Table 6. Experimental power results of the tests for the log-F(4.5,4.5) distribution

Simulation study sample size patterns
Progressive Equal One extreme
Average n Average n Average n
(01, 02, 03, 04, 05) | Test |5 10 |20 5 10 |20 5 10 |20
(0,1,0,0) SU |.1759.3939|.6883 |.2979|.4954|.7849 |.1750.2984 |.5986
MW |.1782|.3714|.6725 |.2848|.4828|.7612 |.1762|.2991|.5776
HN |.1963|.3346|.6095 |.2283|.3920|.6648 |.1576|.2951|.5703
(0,2,0,0) SU |.4132|.8417|.9928 |.6435|.9284|.9970 |.4204|.7265.9640
MW |.3881|.7878|.9856 |.6072|.9007|.9939 |.3896 |.6624 |.9400
HN |.4044|.7360|.9700 |.4955|.7944|.9822 |.3502|.6274|.9240
(0,3,0,0) SU |.6442|.9709|1.0000 |.8657|.9929|1.0000 |.6221|.9206 | .9991
MW |.5849|.9472|.9998 |.8245.9866 |1.0000 |.5667|.8634 |.9938
HN |.6030|.9261|.9992 |.7117|.9562|.9994 |.5375|.8271|.9934
(0,3,1,0) SU |.8035.9889|1.0000 |.8906|.9949(1.0000 |.7841|.9813|.9998
MW |.8039 |.9872(1.0000 |.8740|.9939(1.0000 |.7766|.9772|.9996
HN |.7566|.9657|.9999 |.7505|.9740(.9999 |.6576|.9282|.9988
(0,3,2,0) SU |.8715|.9934 [1.0000 |.8784|.9950 [1.0000 |.8774|.9955|1.0000
MW |.8753|.99271.0000 |.8837.9953|1.0000 |.8733|.9951|1.0000
HN |.8141|.9758|.9999 |.7798|.9761|.9997 |.7186|.9643|1.0000
0,3,2,1) SU |.5981(.9139|.9990 |.7111].9526(.9992 |.6190|.8910|.9978
MW |.6347 |.9240.9994 |.7331|.9631|.9994 |.6318|.9064 |.9976
HN |.5191|.7485|.9819 |.4704|.7863|.9755 |.3319|.6273|.9347
(0,1,0,0,0) SU |.1361.3019|.5684 |.2701]|.4652|.7432 |.1515|.2591.5023
MW |.1410|.3059|.5354 |.2526|.4449|.7106 |.1486|.2703|.4837
HN |.1178].2465|.5001 |.2039|.3250(.5363 |.1219|.2308 |.4523
(0,2,0,0,0) SU |.3480.7154|.9607 |.6027[.8932|.9952 |.3213|.6239|.9164
MW |.3215|.6619|.9271 |.5596|.8471|.9896 |.3122|.5799.8797
HN |.2755|.5747|.8904 |.3998|.6895|.9344 |.2639|.5304 |.8358
(0,3,0,0,0) SU |.5231.9110|.9985 |.8220].9856 |1.0000 |.4905.8300.9915
MW |.4716|.8587|.9918 |.7521|.9665|.9998 |.4591|.7667 |.9735
HN |.4176|.7833|.9846 |.5507|.8580.9937 |.3993|.7144|.9551
(0,3,1,0,0) SU |.7432.9851|.9999 |.9153].9975|1.0000.7108|.9677|.9998
MW |.7408 |.9796 |.9998 |.8918|.9964|1.0000 |.6874 |.9499|.9992
HN |.6190|.9483|.9991 |.7249|.9543|.9988 |.5977|.8990 |.9974
(0,3,2,0,0) SU |.8558.9969 |1.0000 |.9366 |.9992|1.0000 |.8316|.9930|1.0000
MW |.8475.9962 | 1.0000 |.9248|.9990 | 1.0000 | .8045 |.9866 | 1.0000
HN |.7447(.9792|1.0000 |.7965|.9781|1.0000 | .6921 | .9648 | .9998
(0,3,2,1,0) SU |.8640.9965|1.0000|.9119|.9973|1.0000|.8869 |.9977|1.0000
MW |.8761|.9973|1.0000|.9218|.9975|1.0000 |.8942|.9981 | 1.0000
HN |.7163|.9714|1.0000.7208 |.9551|.9996 |.7297|.9707|1.0000

In Table 7, it is understood that the simulation results for the log-F (20,1) which is right skewed are quite
similar to the simulation results for the log-F (4.5,4.5) distribution. Similar to the results in Table 6, the
proposed SU test for the log-F(20,1) distribution gave the highest power values or same values in 72 of 108
different simulation scenarios. In addition, the MW test is slightly stronger than the other tests when

location parameter vectors are (0, 3, 2, 1) and (0, 3, 2, 1, 0).

The experimental power values of the tests given in Table 8 for the Log-F (1,20) distribution are very
similar to the previous power results. If the simulation results for the log-F (1,20) distribution which is left
skewed are examined, it is observed that the proposed SU test gives the highest power values or same values
in 72 of 108 different simulation scenarios. In addition, it is observed that the MW test is more powerful

than the others when the location parameter vectors are (0, 3, 2, 1) and (0, 3, 2, 1, 0).
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Table 7. Experimental power results of the tests for the log-F(20,1) distribution
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Simulation study sample size patterns

Progressive

Equal

One extreme

Average n

Average n

Average n

(01, 82, 63, 04, 05)

Test

5

10

20

5

10

20

5 10

20

(0,1,0,0)

SU

.1690

4046

6794

2983

4959

7673

1663 | .3220

.5819

MW

1816

3743

6735

.2823

4919

.7502

17471.3028

.5660

HN

1872

.3466

.6145

2330

.3836

.6632

14721.2765

.5657

(0,2,0,0)

SU

4091

8447

9919

.6519

.9284

9973

4105].7182

.9658

MW

.3904

.7958

.9856

.6149

.9001

.9942

.3850.6611

.9449

HN

4352

.7506

.9686

.5094

.8076

.9780

.3462|.6359

.9363

(0,3,0,0)

SU

.6304

9733

1.0000

.8697

.9930

1.0000

.6187].9208

.9987

MW

.5669

.9483

.9994

.8224

.9865

1.0000

.5627|.8588

9947

HN

.6022

9269

.9980

.7040

9528

9998

.5371.8421

.9926

(0,3,1,0)

SU

.8007

.9905

1.0000

.8928

9951

1.0000

.7827].9828

1.0000

MW

.8026

.9883

.9999

.8783

.9950

1.0000

.7838.9758

.9998

HN

.7483

.9662

.9999

.71636

9718

.9999

.6717].9330

.9993

(0,3,2,0)

SU

.8763

9933

1.0000

.8683

9943

.9999

.8712].9954

1.0000

MW

.8710

9923

1.0000

8763

9945

9999

.8753].9942

1.0000

HN

.8095

9754

1.0000

.7855

9719

9999

.7404 |.9646

1.0000

0,3,2,1)

SU

.5869

.9160

.9984

.6948

9501

.9990

.5918.8924

.9980

MW

.6198

.9289

.9990

7235

.9630

.9993

.62471.9075

.9978

HN

.5020

7791

.9786

4757

.7900

9716

.3364|.6110

9324

(0,1,0,0,0)

SU

1384

.3206

.5628

.2639

4513

7371

.1396 | .2806

.5196

MW

.1430

.3093

.5260

2547

4427

7119

.1465].2723

4847

HN

1206

.2628

4760

1827

.3262

.5368

.1359].2310

4445

(0,2,0,0,0)

SU

.3456

.7031

.9597

5914

.8927

.9949

.3106|.6128

9144

MW

.3209

.6570

9290

.5553

.8520

.9890

.3050.5773

8717

HN

.2683

5788

9013

3981

6756

9349

2713].5221

.8259

(0,3,0,0,0)

SU

5601

9126

.9983

.8236

9872

.9999

4919.8438

9911

MW

4758

.8567

.9923

.7588

.9685

.9997

4438 .7582

9715

HN

4016

.7855

.9834

5614

8747

9920

.3870.6948

.9560

(0,3,1,0,0)

SU

71592

9879

1.0000

.9037

9971

1.0000

.6869 |.9648

.9996

MW

1487

.9809

1.0000

.8850

9950

1.0000

.6725.9461

.9987

HN

.6344

9444

.9997

.7339

.9589

.9994

.55791.9059

.9955

(0,3,2,0,0)

SU

.8661

9979

1.0000

.9339

.9990

1.0000

.83281.9916

1.0000

MW

.8518

.9960

1.0000

.9266

.9987

1.0000

.8086 |.9850

1.0000

HN

7483

.9809

9999

71834

9824

1.0000

.7085.9608

9998

(0,3,2,1,0)

SU

.8616

.9969

1.0000

.8997

9975

1.0000

.88991.9978

1.0000

MW

.8703

9971

1.0000

9176

.9987

1.0000

.8933].9979

1.0000

HN

.7230

.9703

1.0000

7123

9571

.9989

.71336].9727

1.0000

Table 8. Experimental power results of the tests for the log-F(1,20) distribution

Simulation study sample size patterns

Progressive

Equal

One extreme

Average n

Average n

Average n

(01, 02, 63, 04, 65)

Test

5

10

20

5

10

20

5 10

20

(0,1,0,0)

SU

1674

4012

.6817

2923

4907

.7838

.1820].3152

.5940

MW

1741

3713

6749

2799

4818

.7589

.1881.3047

5771

HN

.1936

.3388

.6079

2401

3819

.6509

1643 |.2845

.5549

(0,2,0,0)

SU

4063

.8440

.9924

6517

.9209

9979

4095].7304

.9616

MW

.3957

7943

9851

.6087

.8997

9954

.3876 | .6663

.9382

HN

4194

.7533

.9681

.5007

.8038

9799

.3408 | .6242

.9288
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(0,3,0,0) SU ].6166.9713|.9999 |.8710|.99211.0000 |.6269 |.9216|.9992
MW |.5818|.9443].9996 |.8149|.9844|1.0000 |.5725|.8614|.9941
HN |.6002|.9266|.9993 |.7016|.9581|.9997 |.5395.8291|.9932
0,3,1,0) SU |.8081|.9890|1.0000 |.8909|.9948|1.0000.7849.9802|1.0000
MW |.8053|.9870|1.0000|.8810.9945|1.0000 |.7860 | .9779 |.9999
HN |.7478(.9731|.9998 |.7660.9702|.9998 |.6674|.9355|.9996
(0,3,2,0) SU |.8753/.9949|1.0000 |.8812|.9959|1.0000.8767 |.9959|1.0000
MW .87291.9945|1.0000 |.8774|.9956 | 1.0000 | .8792{.9941 | 1.0000
HN |.8239(.9781|1.0000.7699|.9761|.9999 |.7485.9660 |.9997
0,3,2,1) SU 1.6025].9209|.9985 |.7211|.9515|.9996 |.6073|.8936.9979
MW .6234|.9288|.9991 |.7448|.9633|.9999 |.6249|.9071|.9984
HN |.4787|.7678|.9786 |.4687|.7873|.9765 |.3306|.6156|.9256
(0,1,0,0,0) SU |.1425|.3144|.5395 |.2782|.4469|.7419 |.1462|.2714|.4976
MW |.1472|.3101|.5270 |.2529|.4378|.6974 |.1538|.2736 |.4865
HN [.1291[.2535|.4919 |.1828|.3220|.5375 |.1231|.2433|.4452
(0,2,0,0,0) SU |.3477|.7033|.9605 |.6066|.8944|.9943 |.3274|.6228|.9166
MW .3305|.6585|.9280 |.5533|.8527|.9878 |.3251)|.5864|.8779
HN |.2807|.5841|.8883 |.3857|.6824|.9333 |.2633|.5268.8310
(0,3,0,0,0) SU |.5364|.9129|.9985 |.8276].9869|.9999 |.4917|.8384.9899
MW |.4755|.8578|.9912 |.7594|.9708|.9996 |.4473|.7664|.9715
HN 1.4040].7995|.9840 |.5571|.8738|.9941 |.3852|.7078|.9647
(0,3,1,0,0) SU |.7590.9853|1.0000|.9038|.9969|1.0000 |.6997 |.9626 | .9995
MW .7393|.9804 |1.0000 | .8892|.9955|1.0000 | .6746 | .9446|.9992
HN |.6015[.9464|.9991 |.7310.9577|.9995 |.5724|.9087|.9977
(0,3,2,0,0) SU |.8584|.9975|1.0000|.9342|.9987|1.0000 |.8237|.9938 | 1.0000
MW |.8465 |.9953|1.0000|.9305.99891.0000 | .8039 |.9880 | 1.0000
HN |.7539].9798|1.0000 |.8057|.9822|1.0000]|.6730.9622|.9996
(0,3,2,1,0) SU |.8617|.9968 |1.0000|.9061 |.9975|1.0000 |.8905 |.9973|1.0000
MW .8813|.9978|1.0000 |.6210.9978 | 1.0000 | .8934 |.9972|1.0000
HN |.7087].9711|1.0000.7158|.9583|.9997 |.7295|.9731|.9997

In Tables 6-8, The proposed SU test gave the highest power values for the parameter vectors such as
(0,2,0,0), (0,3,0,0), (0,2,0,0,0) and (0,3,0,0,0).

4. CONCLUSION

In this study, a nonparametric test called the SU test was proposed for umbrella alternative hypothesis. The
S test proposed by Shan, et al. [16] for ordered alternatives was adapted for umbrella alternatives. Since the
distribution of the proposed test statistic was difficult to determine analytically, the Monte Carlo study was
used to obtain critical values.

In the previous section, the SU test, HN test and MW test by a comprehensive simulation study were
compared in terms of type I error rate and power. According to previous study results, the MW test is the
most common test in the literature for umbrella alternatives. In this study, it was found that the SU test,
MW test and HN test ensured Bradley's robustness criteria based on type I error rate, and the proposed SU
test is generally stronger than the other tests. In approximately 66% of the simulation scenarios, the SU test
gave the highest power values or same values. Also, the new statistics is more powerful when the one
location parameter is 2 or 3 and others are 0.0n the other hand, it is observed that the MW test for the
umbrella alternatives where location parameters decrease monotonically after the peak level as (0, 3, 2, 1)
and (0, 3, 2, 1, 0) gives better results. However, the power results of the proposed test are very close to
those of the MW test in these situations.

As a result, the SU test can be used to test the equality of location parameters against umbrella alternatives
for symmetric, left-skewed, right-skewed distributions with unknown peaks.
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Finally, a few suggestions for the development of this study can be given as follows: In addition to the tests
in this study, the scope of the study can be extended by taking other tests in the literature. The theoretical
distribution or exact distribution of the SU statistic can be found and the simulation study can be based on
these results. Thus, Monte Carlo calculation time can be saved.
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APPENDIX

MCSS <- function(n,tp,nit=10000,alpha=0.05) {
# n: sample size vector

# tp: peak point

x<-y<-list ()

k<-NROW (n)

mu<-c (rep.int (0, k))

SS<-c ()

for (i in 1:k) x[[i]] <- rep.int(i,n[i])

for (it in 1l:nit)

{
for (i in 1:k) y[[1i]] <- mu[i]+log(rf(n[i],4.5,4.5))
simdata<-as.data.frame (cbind (unlist (x),unlist(y)))
names (simdata) [1]<=-"XX"
names (simdata) [2]<=-"YY"
simdata$XX<-as.factor (simdataS$xX)
SS[it]<-SsUmb (YY~XX, simdata, tp) $Statistic

}

result <- list ()

result$crival <- quantile(SS,l-alpha)

}

Figure 1. MCSS function for calculating theMonte Carlo critical values

SsUmb <- function (formula, data, tp) {
# formula: a formula of the form 1lhs ~ rhs where lhs gives the sample values and rhs
the corresponding groups
# data: a data frame containing the variables in the formula formula
# tp: peak point
dp=as.character (formula)
DNAME <- paste(dp[[2L]], "and", dpl[[3L]])
y = datal, dpl[2L]]]
r = rank(datal, dpl
group = datal, dpll
n <- length(y)
x.levels <- levels(factor (group))
P<-NROW (x.levels)
sy.n<-y.n <-r.n<-NULL
S<-0
for (i in x.levels) {
y.n[i] <- length(y[group==il])
}
sy.n=cumsum(y.n)
r.n=matrix(c(r,group,y),ncol=3,nrow=n)
for (i in 1:(tp-1)) {
for (j in (i+1) :tp) {

for (k in (sy.n[i]l-y.n[i]+1):sy.n[i]){
for (m in (sy.n[j-1]1+1):sy.n[j]){
S=S+(r.n[k,3]<r.n[m,3])*(r.n[m,1]-r.n[k,1])}}}}

for (i in tp:(p-1)) {

for (j in (i+1) :p) {
for (k in (sy.n[i]- n[ J+1):sy.n[i]) {
for (m in (sy.n[j-1]+1): sy nl(jl){
S=S+(r.n[k,3]1>r.n[m,3])*(r.n[k,1]-r.n[m,1]1)}}}}

result <- list ()
result$Statistic <- S
}

Figure 2. SsUmb function for calculating theproposed test statistics



