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Abstract 

In this paper, new type of Archimedean copula based on cotangent generator function, and 

dependence characteristics are investigated. Also, the estimation procedure of the dependence 

parameter is given. A Monte Carlo study is performed to measure the performance of estimators. 

To demonstrate the goodness of fit performance of the new family, a real data analysis is 

performed. 
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1. INTRODUCTION 

 

Copula models are popular tools for describing the dependence of multivariate data where the univariate 

distribution functions are combined with joint distribution function by Sklar's theorem (Sklar [1]). Consider 

random variables 𝑿 and 𝒀 with joint cumulative distribution function 𝑯 and marginals 𝑭 and 𝑮, 

respectively. Then there exists a copula C such that 𝑯(𝒙, 𝒚) = 𝑪(𝑭(𝒙), 𝑮(𝒚)), for all 𝒙,𝒚. 

 

If the margins are continuous, then C is unique; otherwise, C is uniquely determined on 𝑅𝑎𝑛𝑔𝑒(𝐹) ×
𝑅𝑎𝑛𝑔𝑒(𝐺). When the bivariate joint distribution function 𝐻 and the marginals 𝐹 and 𝐺 are known, copula 

can be constructed as 𝐶(𝑢, 𝑣) = 𝐻(𝐹−1(𝑢), 𝐺−1(𝑣)) where 𝑈 = 𝐹(𝑥) and 𝑉 = 𝐺(𝑦). 

A bivariate copula 𝐶: [0,1]2 →  [0,1] is a bivariate distribution function with the following properties: 

 

 𝐶(𝑢, 0) = 𝐶(0, 𝑣) = 0, 
 𝐶(𝑢, 1) = 𝑢 and C(1, v) = v, 

 C is two-increasing, that is, for every rectangle 𝐵: [𝑢1, 𝑢2] × [𝑣1, 𝑣2] in 𝐼 such that 𝑢1≤ 𝑢2 and 

v1≤ v2. The C-Volume of B is non-negative, i.e. 

𝑉𝐶(𝐵) = 𝐶(𝑢2, 𝑣2) − 𝐶(𝑢2, 𝑣1) − 𝐶(𝑢1, 𝑣2) + 𝐶(𝑢1, 𝑣1) ≥ 0.                                                             (1) 

 

In the copula literature, an important family of copulas is known as Archimedean copula. This family of 

copulas class is characterized by the generator functions φ. Archimedean copula with generator function φ, 

𝐶: 𝐼2 →  𝐼 is defined by 

 

𝐶(𝑢, 𝑣) = 𝜑[−1]{𝜑(𝑢) + 𝜑(𝑣)};   𝑢, 𝑣 ∈ [0,1].                                                                                                               (2) 
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The generator function φ has the following properties 

 

1) 𝜑(1) = 0, 
2) 𝜑 is decreasing, that is 𝜑′(𝑡) < 0, 𝑡 ∈ (0,1), 
3) 𝜑 is strictly convex, that is 𝜑′′(𝑡) > 0, 𝑡 ∈ (0,1). 

 

In recent years, various studies have been carried out on the Archimedean copula with trigonometric 

generator function. First time in the literature, Bal and Najjari [2] introduced Archimedean copula with 

hyperbolic cosecant generator function as  𝜑𝑐𝑠𝑐ℎ(𝑡) = 𝑐𝑠𝑐ℎ(𝑡𝜃) − 𝑐𝑠𝑐ℎ(1) , 𝜃 > 0. Najjari et al. [3] 

proposed hyperbolic cotangent function as a generator of new Archimedean copula as 𝜑𝑐𝑜𝑡ℎ(𝑡) =
𝑐𝑜𝑡ℎ(𝑡𝜃) − 𝑐𝑜𝑡ℎ(𝜃) , 𝜃 >  0. Some dependence properties of this new family were investigated in their 

work. In our opinion, there are some disadvantages to the usage of  𝜑𝑐𝑠𝑐ℎ(𝑡) and 𝜑𝑐𝑜𝑡ℎ(𝑡). As stated in Bal 

and Najjari [2], general dependence measure Kendall’s tau cannot be obtained as a closed-form for  

𝜑𝑐𝑠𝑐ℎ(𝑡). So, they derived approximated formula of Kendall’s tau. Despite Najjari et al. [3] obtained a 

closed-form of Kendall's tau, interval of Kendall’s tau covers [1/3,1]. On the other hand, lower tail 

dependence is constant and equals to 1/2. In this study, a cotangent function is proposed as a new 

trigonometric generator function. This new trigonometric copula covers wider lower tail dependence and 

Kendall's tau interval than the hyperbolic cotangent copula. In addition, all dependence measures can be 

derived as a closed-form.           

                                                     

The rest of the paper is organized as follows. Section 2 gives some introduction on the existing 

Archimedean copula with trigonometric function and introduces a new family of Archimedean copula. 

Section 3 is devoted to the parameter estimation of the new family. Also, the Monte Carlo simulation study 

is performed to measure the performance of estimators. Section 3 describes the application to real data. 

Finally, the last section is devoted to the conclusion. 

 

2. COTANGENT GENERATOR FUNCTION AND ITS PROPERTIS 

Any generator function of the Archimedean copula must be satisfied to properties given in definition 1. In 

summary, φ(t) has some properties such as 𝜑(1) = 0, 𝜑′(𝑡) < 0, 𝜑′′(𝑡) ≥ 0. Let 𝜑𝑐𝑜𝑡(𝑡) = 𝑐𝑜𝑡(𝑡)𝜃 −
𝑐𝑜𝑡(1)𝜃 be our proposed trigonometric generator function. Our new trigonometric generator function has 

two continuous derivatives on (0,1), and it satisfies to all properties of generator function for all θϵ(0, ∞). 

The φcot(t) with different parameters displayed in Figure 1. Its inverse function can be defined as 

𝜑−1(𝑡) = 𝑎𝑟𝑐𝑐𝑜𝑡 ((𝑐𝑜𝑡(1)𝜃 + 𝑡)
1

𝜃)                                                                                                                   (4) 

so that, related copula can be defined as  

𝐶(𝑢, 𝑣) = 𝑎𝑟𝑐𝑐𝑜𝑡((𝑐𝑜𝑡(𝑢)𝜃 + 𝑐𝑜𝑡(𝑣)𝜃 − 𝑐𝑜𝑡(1)𝜃)
1

𝜃) .                                                                                        (5)      

For dependence measures, Kendall’s tau can be expressed as follows 

 𝜏 = 1 + 4 ∫ ∫ 𝐶(𝑢, 𝑣)𝑑𝐶(𝑢, 𝑣) = 1 + 4 ∫
𝜑(𝑡)

𝜑′(𝑡)
𝑑𝑡 = 1 −

2 𝐹(1,
2+𝜃

2
,
4+𝜃

2
,−𝑡𝑎𝑛(1)2)1

2

2+𝜃
𝑡𝑎𝑛(1)21

0

1

0

1

0
                         (6)        
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Figure 1. 𝜑𝑐𝑜𝑡(𝑡) with 𝜃 = 1; 3; 5 

 

where 𝐹1
2  is the hypergeometric function. For more details about the hypergeometric function, see 

Bagdasaryan [4]. All results are derived scientific computing program “Mathematica 11.0.1.0”'. Graph of 

the function 𝜏(𝜃) displayed in Figure 2(a). From Figure 2(a), 𝑙𝑖𝑚
𝜃→∞

𝜏(𝜃) = 1. As for tail behavior, upper tail 

dependence and lower tail dependence coefficients can be expressed in terms of generator function, 

respectively, as 

𝜆𝑈 = 2 − 2
𝑙𝑖𝑚

𝑡→1−(
𝜑(𝑡)

𝜑′(𝑡)
)′

= 0, 𝜆𝐿 = 2
𝑙𝑖𝑚

𝑡→0+
(

𝜑(𝑡)

𝜑′(𝑡)
)′

= 2− 
1

𝜃  .                                                                                            (7) 

See Michiels et al. [5]. Graph of the function 𝜆𝐿(𝜃) displayed in Figure 2(b). From Figure 2(b), 

𝑙𝑖𝑚
𝜃→∞

𝜆𝐿(𝜃)  = 1. Also, Figure 3 displays scatter plots of new trigonometric copula with dependence 

parameters 𝜃 = 1; 3; 5. We conclude that it behaves much like the Clayton family. Also, dependence 

coefficients range of trigonometric Archimedean copula is given in Table 1. 

 

 
(a) Graphs of the function 𝜏(𝜃) 

 
(b)  Graphs of the function 𝜆𝐿(𝜃) 

Figure 2. Graphs of the dependence coefficients 
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      (a) 𝜃 = 1 

 
(b) 𝜃 = 3 

     

 
(c) 𝜃 = 5 

Figure 3. Scatter plots of new family 

When Table 1 examined, the new Cotangent copula covers a larger lower tail dependence interval 

than Cotangent hyperbolic copula. Also, it is true the interval of Kendall's tau. We can conclude 

that Cotangent copula has much flexibility than the Cotangent hyperbolic copula.  

 

Table 1. Interval of Kendall's Tau (𝜏), Lower (𝜆𝐿) and Upper (𝜆𝑈) tail dependences of 

trigonometric copulas 

Copula θ ∈ 𝜏 ∈ 𝜆𝑈   ∈ 𝜆𝐿   ∈ 

Cot (0, ∞) (−0.2312, 1) {0} (0,1) 

Coth (0, ∞) (1/3, 1) {0} {1/2} 

 

 

3. PARAMETER ESTIMATION OF COTANGENT COPULA: A SIMULATION STUDY 

 

In this section, we investigate the estimation of the parameter of Cotangent copula based on various 

methods. These are maximum Pseudo-likelihood, inverted Kendall's tau and minimum distance estimators 

based on the empirical process and Kendall process. Also, the Monte Carlo study is performed to measure 

the performance of four estimation methods.  

 

Let (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛) be a bivariate random sample from copula 𝐶(𝑢, 𝑣). Suppose that Copula 

𝐶(𝑢, 𝑣) has a density 𝑐(𝑢, 𝑣). defined by 

 

𝑐(𝑢, 𝑣) =
𝜕2𝐶(𝑢,𝑣)

𝜕𝑢𝜕𝑣
,    𝑢, 𝑣 𝜖 [0,1],                                                                                                          (8) 

 

then the pseudo-log-likelihood function is given by 

 

𝑙(𝜃) = ∑ 𝑙𝑜𝑔 (𝑐(𝐹𝑛(𝑥𝑖), 𝐺𝑛(𝑦𝑖)))𝑛
𝑖=1                                                                                                                                  (9) 

      

where 𝐹𝑛(𝑥) and 𝐺𝑛(𝑦) are empirical distribution function defined, respectively, by 

 

𝐹𝑛(𝑥) =
1

𝑛
∑ 𝑰(𝑋𝑖 ≤ 𝑥),𝑛

𝑖=1        𝐺𝑛(𝑦) =
1

𝑛
∑ 𝑰(𝑌𝑖 ≤ 𝑦)𝑛

𝑖=1                                                                             (10) 

where 𝑰 denotes indicator function. The maximum pseudo-likelihood estimator is the value 𝜃𝑛
𝑀𝐿𝐸 that 

maximizes 𝑙(𝜃). Genest et al. [6] showed that 𝜃𝑛
𝑀𝐿𝐸 is a consistent estimator under some regularity 
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conditions. They stated 𝜃𝑛
𝑀𝐿𝐸 is consistent at independence. So, the consistency of 𝜃𝑛

𝑀𝐿𝐸 may not be fulfilled 

as Kendall’s tau increased. The function “optimize” in statistical programming language R is quite handy 

when maximizing likelihood function. 

 

Another important parameter estimation method for Archimedean copula is inverted Kendall's tau 

estimator. Let 𝜏 = ℎ(𝜃) be Kendall's tau and let τn be the empirical Kendall's tau based on a random sample 

of size n. Then the moment estimator of θ denoted by 𝜃𝑛
𝜏 is given by 𝜃𝑛

𝜏 = ℎ−1(𝜏𝑛). √𝑛(𝜃𝑛
𝜏 − 𝜃) is 

asymptotically normal with zero mean. See, Kojadinovic and Yan [7]. 

 

Table 2. Estimated MSE scores of Cotangent copula parameter estimators with sample size n=100, 500 

𝑛 𝜏 𝜃 𝜃𝑛
𝜏 𝜃𝑛

𝑀𝐿𝐸 𝜃𝑛
𝐶𝑣𝑀𝐶  𝜃𝑛

𝐶𝑣𝑀𝐾  

100 0.1 0.52 0.0232 0.0403 0.0414 0.0125 

 0.2 0.76 0.0347 0.0586 0.0657 0.0364 

 0.3 1.05 0.0457 0.0692 0.0879 0.0532 

 0.4 1.43 0.0790 0.1049 0.1668 0.0853 

 0.5 1.95 0.1179 0.1428 0.3015 0.1248 

 0.6 2.71 0.2009 0.2020 0.5733 0.2330 

 0.7 3.95 0.4301 0.3787 1.8115 0.4921 

 0.8 6.37 1.1142 0.8533 9.6958 1.4691 

500 0.1 0.52 0.0040 0.0124 0.0049 0.0041 

 0.2 0.76 0.0061 0.0164 0.0075 0.0067 

 0.3 1.05 0.0098 0.0215 0.0120 0.0110 

 0.4 1.43 0.0139 0.0262 0.0176 0.0153 

 0.5 1.95 0.0214 0.0344 0.0287 0.0242 

 0.6 2.71 0.0356 0.0461 0.0522 0.0413 

 0.7 3.95 0.0666 0.0690 0.1117 0.0793 

 0.8 6.37 0.1537 0.1354 0.3410 0.1953 

 

 

Weiß [8] investigated the different minimum-distance estimators for copula parameters. The first one is 

minimum-distance estimators based on the empirical copula process. This method is based on the empirical 

process 

 

ℂ𝑛 = √𝑛(𝐶𝑛 − 𝐶𝜃),                                                                                                                                         (11) 

where 𝐶𝑛 is empirical copula defined by 

𝐶𝑛(𝑢, 𝑣) =
1

𝑛
∑ 𝑰𝑛

𝑖=1 (𝑈𝑖,1 < 𝑢, 𝑉𝑖,1 < 𝑣),                                                                                                        (12) 

and 𝐶𝜃 is the hypothesised copula. Cramer-von-Mises statistic based on ℂ𝑛 is defined by 

𝐶𝑣𝑀𝐶 = ∫ ∫ ℂ𝑛
2𝑑𝐶𝑛

1

0

1

0
 .                                                                                                                                   (13) 

The minimum distance estimators based on the empirical copula process is given by 
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𝜃𝑛
𝐶𝑣𝑀𝐶 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝜃𝜖𝛩
𝐶𝑣𝑀𝐶.                                                                                                                                  (14) 

The convergence of the empirical copula process is investigated in Genest et al. [9] 

 The second type of Minimum distance estimator is based on Kendall process. Genest and Rivest [10] 

investigated empirical estimate of Kendall distribution function (𝑡) = 𝑡 −
𝜑(𝑡)

𝜑′(𝑡)
 . For the estimation of the 

random variable T = H(x, y), univariate distribution function 𝐾(𝑇) = 𝑃(𝐻(𝑥, 𝑦) ≤ 𝑡) = 𝑃(𝐶(𝑢, 𝑣) ≤ 𝑡) 

should be estimated on the interval [0,1]. Then a nonparametric estimation of 𝐾𝑛(𝑡) is given by 

 

𝐾𝑛(𝑡) =
1

𝑛
∑ 𝑰(𝑇𝑖 ≤ 𝑡)𝑛

𝑖=1 .                                                                                                                       (15) 

Also, we note that Susam and Ucer [11] proposed estimation of K(t), which is a continuous 

approximation of Kn(t). Genest et al. [12] defined Kendall process 

 

𝕂𝑛 = √𝑛(𝐾𝑛 − 𝐾).                                                                                                                            (16) 

 

Cramer-von-Mises statistic based on 𝕂n is defined by 

 

𝐶𝑣𝑀𝐾 = ∫ 𝕂𝑛(𝑡)2𝑑 
1

0
𝐾𝑛(𝑡).                                                                                                                 (17) 

 

The minimum distance estimator based on the Kendall process is given by 

 

𝜃𝑛
𝐶𝑣𝑀𝐾 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝜃𝜖𝛩
𝐶𝑣𝑀𝐾 .                                                                                                                                (18)  

 

The convergence of the empirical process 𝕂𝑛 is investigated in Genest and Rivest [10]. 

                                                                          

Monte Carlo simulation study was conducted to compare Inversion of Kendall's tau estimator, Maximum 

pseudo-likelihood estimator, and Minimum distance estimators of dependence parameter θ of Cotangent 

copula. The primary purpose is achieved by comparing the true parameter with the parameters estimated 

with the four estimation methods. The data are generated from Cotangent copula with Kendall's Tau 0.2, 

0.3, ... ,0.8 and sample of sizes n=100,500. Table 2 presents the estimated Mean squared error (MSE) scores 

of the four estimation methods. We can conclude that Inverted Kendall's tau method outperforms the other 

estimation methods for sample size n=100 and 𝜏 < 0.7. For τ ≥ 0.7 and n=100, the maximum Pseudo-

likelihood estimator is the best one. Inverted Kendall's tau method has lower MSE scores for sample size 

n=500 and 𝜏 < 0.7. Also, for 𝜏 ≥ 0.7  and n=500, the maximum Pseudo-likelihood estimator outperforms 

the others. 

 

4. REAL DATA EXAMPLE 

 

In this section, we fit Cotangent copula and the Cotangent hyperbolic copula to two data sets used in Najjari 

et al. [3].  According to this paper, two data sets share n = 113 annual (May-October) maxima of the Vltava 

river (Bohemia) flow rate (measured above the dam Kamyk in period 1890-2007) for which the 

corresponding flood volume was computed (from daily flow averages) by two methods.  

 

Scatter plots of the two data set are shown in Figure 4. It demonstrates obvious dependence structures 

(especially lower tail dependence) between involved random variables. Copulas were fitted to data sets 

using the pseudo-likelihood method as described in Section 3. Also, Goodness of fit was tested by 𝐶𝑣𝑀𝐾 

defined in Section 3. The goodness of fit results of the two data sets are shown in Table 3. Also, empirical 

and fitted 𝜆 functions are visualized in Figure 5. We select 𝜆 function as a comparison of the goodness of 

fit because 𝜆 function has better visualization than the generator function. See, Michiels et al. [5]. 
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(a) fixed-width  

 

 
(b) variable-width flood wave 

Figure 4. Scatterplots of the data sets 

 

From Table 3, two types of copula provide a strong fit. In addition to, Cotangent copula outperforms the 

Cotangent hyperbolic copula for the data set variable-width flood wave. When Figure 5(b) examined, 

Cotangent copula has a better fit at left tails of the data set than Cotangent hyperbolic copula.  From Figure 

(5a), it is also true for the data sets fixed-width. On the other hand, Cotangent hyperbolic copula has a better 

fit at the right tail. The goodness of fit results for the most used one-parameter families is derived in Bal 

and Najjari [2]. 

 

Table 3. The goodness of fit results for two data set 

Data Copula 𝜃 CvM P-value 

fixed-width Cot 6.9891 0.0422 0.1384 

 Coth 9.0425 0.0346 0.2358 

variable-width flood wave Cot 3.2354 0.0415 0.5111 

 Coth 4.1854 0.0591 0.1785 

 

 

 
(a) fixed-width 

 
(b) variable-width flood wave 

Figure 5. Visualization of the goodness-of-fit of the Cotangent and Cotangent hyperbolic copula based 

on 𝜆 function 

 

5. REAL DATA EXAMPLE 

 

Cotangent functions have been proposed as a generator function of the new family. Dependence 

characteristics such as Kendall's tau, Upper tail dependence, and Lower tail dependence of this new family 

are derived. Also, the estimation performance of the dependence parameter θ investigated via Monte Carlo 
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simulation study for four estimation methods. According to the Monte Carlo simulation study, Inverted 

Kendall's tau method has better performance than the others in almost all cases. We modeled the 

dependence structure of the two data sets using two trigonometric copulas. Cotangent copula performs well 

in Real application data. Also, we note that more parameterized generators allow for better flexibility while 

modeling the copula. One can investigate the generator function 𝜑(𝑡) = 𝑐𝑜𝑡(𝛽𝑡)𝜃 − 𝑐𝑜𝑡(𝛽)𝜃 and related 

dependence properties with valid parameters 𝜃 and 𝛽 for 𝑡 𝜖[0,1]. 
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