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Abstract: Our environment has been affected by increasing level of discharged organic and inorganic pollutants from anthropogenic sources. 
Perfluorinated compounds (PFCs) are one of the important sources of pollution and they are major risks for the aquatic ecosystems. The aim 
of this study is to determine the effects of PFOS on GST enzyme activities in mussels (Mytilus galloprovincialis). For this purpose, mussels were 
exposed to six different PFOS concentrations and the effects were evaluated. PFOS has been caused to a statistically significant increase in GST 
activity in hepatopancreas in all experimental groups compared with the control group. In conclusion, it has been approved that GST which is 
a defense mechanism of organisms, can be a very useful tool to detect the toxic effects of pollutants.
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Öz: İnsan aktiviteleri sonucunda, çevremiz her geçen gün gittikçe artan konsantrasyonda organik ve inorganik kirleticilere maruz kalmaktadır. 
Bu koşullarda, sucul ekosistemler açısından büyük risk oluşturan perflorlu bileşikler önemli bir yer tutmaktadır. Çalışmanın amacı, PFOS’un 
midyede (Mytilus galloprovincialis) GST enzim aktivitesi üzerine etkilerini belirlemektir. Bu amaçla, midyeler 6 farklı PFOS konsantrasyonuna 
maruz bırakılmış ve etkileri değerlendirilmiştir. Sonuç olarak, midye hepatopankreasında GST enzim aktivitesinin bütün deneme gruplarında 
kontrole göre istatistiksel olarak anlamlı bir yükselme gösterdiği bulunmuştur ve midyelerin korunma mekanizması olarak GST’nin, kirleticilerin 
toksik etkilerini belirlemek için yararlı bir araç olduğu ortaya konulmuştur.

Anahtar kelimeler: Perflorlu bileşikler, perflorooktan sülfonat, midye, Mytilus galloprovincialis, GST enzim aktivitesi
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INTRODUCTION
The aquatic environment is affected by different 

sources of pollution like domestic, industrial 
wastes and residue of human agricultural practices. 
Unfortunately, this ecological problem perceived as a 
universal problem nearly after the industrial revolution 
of the 1750s. The chemicals were increasingly used 
to enhance our daily life comfort in various fields. 
Researchers have paid more attention and give priority 
to the studies related with deleterious effects of 
chemicals such as persistent organic pollutants (POPs) 
on ecosystems, since the concentrations of organic and 
inorganic pollutants from anthropogenic sources in the 
environment have been increasing. Effects of different 
pollutants can be assessed by various bio tests like 
AMES/Salmonella mutagenicity test (Boyacıoğlu et al., 
2007), embryotoxicity test with sea urchins (Karaaslan 
et al., 2012; Gunduz et al., 2013) or algal growth 
inhibition assay (Katalay et al., 2012).

POPs are the priority pollutants that pose a risk 
to aquatic ecosystems and human health due to 
biomagnification through aquatic food chain. The 
usage of POPs was restricted in 2004 by the Stockholm 
Convention. Perfluorinated compounds, particularly 
PFOS are widely used in the industrial applications, 
such as protective coatings of carpets, furniture, paper 
and textile as well as in the polytetrafluoroethylene 
products, and fire-fighting foams (Ahrens and 
Bundschuh 2014). Perfluoroalkyl and polyfluoroalkyl 
substances (PFASs) have been detected in many 
compartments of ecosystems due to the gross usage 
for almost 60 years (Houde et al., 2011; Wang et al., 
2015; Yamashita et al., 2005). Some of the PFASs are 
listed in the national and international regulations 
because of bioaccumulative and toxic nature (OECD, 
2002). Perfluorooctanesulfonic acid (PFOS) were 
added to Stockholm Convention's Annex B in 2009 and 
then its production and usage gradually decreased. 
Although, Zhao et al (2017) reported that major global 
manufacturers of perfluorooctanoic acid (PFOA) and 
its precursors were promised to voluntarily stop their 
production in 2015 (Zhao et.al, 2017; EPA, 2010), the 
releases of PFASs continue (Kwok et al., 2015; Müller et 
al., 2011). PFOS have strong carbon fluorine bonds and 
have lipophobic and hydrophilic characteristics (Kissa, 
2001; Lindstrom et al., 2011). Ionic PFASs are resistant to 
photolysis, pyrolysis, hydrolysis and biotransformation. 
Thus they are highly persistent component in the 
environment (Kissa, 2001; Han et al., 2015).

As a result of this, PFOS has been detected in various 
environments such as air, sediments and water (Yeung 
et al, 2006; Kovarova et al., 2012; Naile et al., 2010). 
Paul et al. (2009) had reviewed that “total historical 

worldwide production of POSF was estimated to be 96 
000 t (122 000 t, including unusable wastes) between 
1970-2002. Estimated global release of production 
were 45 250 t to air and water 1970-2012 from direct 
(manufacture, use, and consumer products) and 
indirect (PFOS precursors and/or impurities) sources. 
The various ecological studies confirm that a large part 
of perfluorinated compounds were found in surface 
waters, especially in the oceans (Prevedouros et al., 
2006).  Several studies on terrestrial and aquatic species 
showed that these compounds lead to toxic effects in 
living organisms (O’Brien et al., 2009; Huang et al., 2010; 
Boudreau et al., 2003). 

In order to find out harmful effects of pollutants, 
back ground information is necessary at different 
trophic levels. Biomarkers is considered the most 
promising tools for ecotoxicological applications 
because of their ability to identify causal mechanisms 
that is potentially responsible for effects at higher levels 
of organization (Peakall and Walker, 1994; Adams, 2002). 
Generally, GST enzyme activities are included in this 
group of biomarkers and it catalyzes the conjugation of 
glutathione with xenobiotic, including perfluorinated 
compounds (Jemec et al.,2010). Oxidative stress and 
antioxidant enzymes are widely used as biomarkers in 
mussels. Mussels are sensitive to the effect of reactive 
oxygen species like other aerobic organisms (Winston 
et al., 1996; Funes et al., 2006). It has been shown that 
PFC type pollutants alter the levels of antioxidants in 
mussels (Liu et al., 2014). Glutathione S-transferase 
(GST) is the important phase II enzyme present 
in the living organisms. Glutathione S-transferase 
enzymes are dimeric proteins that have a key role 
in the detoxification of endogenous and exogenous  
electrophilic compounds (Mainwaring et al., 1996). 
Glutathione S-transferase activity measurements 
have been used in many different studies to monitor 
contamination level in different marine species. Many 
pollutants such as dichlorodiphenyl trichloroethane 
(DDT), Benzo[a]pyrene (BaP), perfluorooctanoic 
acid (PFOA), perfluorooctane sulfonate (PFOS). are 
detoxified by glutathione S-transferase enzymes.

The effects of persistent organic pollutants such 
as PFOS can occur at any different trophic levels. In 
aquatic toxicological studies to define the effects of 
toxicants, biomarkers are accepted as highly important 
tools. They have been used as early warning systems in 
order to protect environmental damages 

In this study, the effects of Perfluorinated 
compounds (PFOS) on the induction of glutathione 
S-transferase activity in mussels were examined.



Effects of perfluorooctane sulfonate compounds on the biochemical activities in mussels (Mytilus galloprovincialis)

419

MATERIALS AND METHOD
Mussels were collected from the mussel 

culture facilities in İzmir-Çeşme, and acclimated to 
artificial seawater for 6 days. After the acclimation 
process, to evaluate the effect of GST enzyme 
activity, Mytilus galloprovincialis were exposed to 
different concentrations of PFOS. In order to test six 
concentrations of PFOS (2-3-5-6-8-10 ppm), a total 
of 120 mussels were used. During the experiment, M. 
galloprovincialis were fed daily by addition of 30 ml/l 
of Chlorella sp. (approximately 70,000 cells/mL) to each 
aquarium sized 57x39x28 cm. The mussels were kept 
by 12/12 light cycle. The water in the aquarium was 
changed every other day.

At the end of the experiment, the mussels were taken 
out and shell length and weight were measured by 
using calipper and digital scale [6,61 ± 0,41 (cm), 24,43 
± 5,01 (gr)]. To analyze the GST activity, hepatopancreas 
was dissected from the mussel as fast as possible 
and scaled. Collected tissues were washed with the 
phosphate buffer and homogenized in an Ultra Turax 
tissue homogenizer in homogenization buffer. 300 ml 
of homogenization buffer contained 1 M KCl (45 mL), 
100 mM DTT (3 mL), 100 mM EDTA (3 mL), 10 mM PMSF 
(3 mL), 100 mM phosphate buffer (200 mL) and pH 7.4. 
The homogenate tissue was centrifuged at 10 000×g 
at 4°C for 30 min to obtain the postmitochondrial 
fraction. During the analysis, great attention is required 
to maintain the entire cold chain 

GST activity was measured according to the method 
of Habig et al. (1974), by following the conjugation 
of reduced glutathione (GSH) with 1-chloro-2,4-
dinitrobenzene (CDNB) at 340 nm for 10 min at constant 
temperature using kinetic spectrophotometer (BioTek-
SYNERGY|HTX). Protein concentration was measured 
according to the method of Bradford (1976). GST 
activities were expressed as nmoles/min/mg of S10 
protein (mg P). The differences between samples were 
investigated one-way ANOVA and Multiple Range 
Test. The statistical analysis was performed using the 
Statgraphics software v.16.2 and statistical significance 
was defined at p<0.05 level.

RESULTS
Hepatopancreas (digestive glands) were taken 

to determine the effect of various concentrations of 
PFOS on antioxidant enzyme activities of mussel, M. 
galloprovincialis. The results are presented in Figure 1 
for all treatment periods including 7, 15 and 21 days. 
Levels of GST in control group were ranged between 
0.023and 0.035 μmol/min/mg. 

GST activity in hepatopancreas of mussels exposed 
to lowest concentration (2 mg/L) increased gradually 

from 0,027 to 0,044 μmol/min/mg between the 7th 

day and 21th day of experiment. Furthermore, in the 
mussels exposing to 3 mg/l PFOS concentration had 
the highest GST activity (0,074 μmol/min/mg) which 
was nearly twice of control value at the end of the 21th 
day of experiment The group exposed to 5 mg/l PFOS 
concentration showed similar pattern with slightly 
decreased value in the 21 day. The GST activity in the 
mussels exposed to 8 mg/l PFOS was higher nearly 
two times compared with control value in 7th day and 
the value decreased slightly in the next few days. On 
the other hand, the highest dosage of PFOS (10mg/l) 
caused the lowest GST activity in the mussel when 
compared to other experimental groups.

GST activity increasing regularly in lower 
concentrations was statistically significant (p<0.05). 
The results indicated that in lower concentrations of 
PFOS, GST activity can be increased. It means that 
organisms have healthy reaction to metabolizing the 
contaminants. However, in higher concentrations (8,10 
mg PFOS/l), GST values changed irregularly comparing 
to control group (p<0,05). M. edulis samples exposed 
to 8 mg PFOS/l showed sharp increase during the 
first week of the test, but the level lowered gradually 
afterwards. Unlike to this, the group exposed to 10 mg 
PFOS/l had the weekest GST activity. This may explaine 
the toxic effect of PFOS on hepatopancreas of mussel 
in high concentrations. It seems that they couldn’t have 
enough function to produce the enzymatic activity for 
protection. This result suggests that the toxic effect 
of PFOS is increased by restraining the production of 
enzyme 

Figure 1. GST activity in the mussels affected by various 
concentrations of PFOS in the different test periods.

DISCUSSION
M. galloprovincialis has been commonly used as 

bioindicator organism in biomonitoring programs 
(Livingstone, 1998; Cheung et al., 2001; 2002). 
Because they are filter feeding organisms and they 
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CONCLUSION
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In addition, the susceptibility of M. galloprovincialis 
to various pollutants have been confirmed with 
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pollutants far below the lethal concentrations have 
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In conclusion, to protect the ecosystem, changes 
in enzyme activity due to the toxicants can be used as 
biomarkers. It is important to perform similar studies 
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species diversity and ecosystem health.
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